Publications by authors named "R Tuckermann"

Aerosol particles of hydrogen chloride corresponding to three distinct solid phases have been generated in a collisional cooling cell and observed via FTIR spectroscopy. The cubic phase of HCl was observed with cell temperatures of 90-100 K, while the highly ordered orthorhombic phase predominated below this temperature. The previously reported metastable phase was also observed under some conditions.

View Article and Find Full Text PDF

An experimental apparatus combining Raman spectroscopy with acoustic levitation, Raman acoustic levitation spectroscopy (RALS), is investigated in the field of physical and chemical analytics. Whereas acoustic levitation enables the contactless handling of microsized samples, Raman spectroscopy offers the advantage of a noninvasive method without complex sample preparation. After carrying out some systematic tests to probe the sensitivity of the technique to drop size, shape, and position, RALS has been successfully applied in monitoring sample dilution and preconcentration, evaporation, crystallization, an acid-base reaction, and analytes in a surface-enhanced Raman spectroscopy colloidal suspension.

View Article and Find Full Text PDF

Methods to probe the molecular structure of living cells are of paramount importance in understanding drug interactions and environmental influences in these complex dynamical systems. The coupling of an acoustic levitation device with a micro-Raman spectrometer provides a direct molecular probe of cellular chemistry in a containerless environment minimizing signal attenuation and eliminating the affects of adhesion to walls and interfaces. We show that the Raman acoustic levitation spectroscopic (RALS) approach can be used to monitor the heme dynamics of a levitated 5 microL suspension of red blood cells and to detect hemozoin in malaria infected cells.

View Article and Find Full Text PDF

Rapid-scan Fourier transform infrared spectroscopy of the vapor/solid formation process of water nanoparticles in the 180-140 K temperature range at thermal-equilibrium conditions is reported. At 167 K a transition in the formation process was observed: the particle volume quintuples and the particle formation time triples within a temperature interval of +/-0.4 K caused by the temperature control.

View Article and Find Full Text PDF

Surface layers of natural and technical amphiphiles, e.g., octadecanol, stearic acid and related compounds as well as perfluorinated fatty alcohols (PFA), have been investigated on the surface of acoustically levitated drops.

View Article and Find Full Text PDF