Introduction: The aim of this study was to assess the long-term impact and potential effectiveness of our specialized acellular dermal matrix (ADM) in a two-stage breast reconstruction process.
Objective: Opinions regarding the use of ADMs are currently divided. While their positive contribution to reconstructive breast surgery is evident, the results of studies vary depending on specific procedures, patient selection, and techniques employed.
The advent of mobile electroencephalography (mEEG) has created a means for large scale collection of neural data thus affording a deeper insight into cognitive phenomena such as cognitive fatigue. Cognitive fatigue - a neural state that is associated with an increased incidence of errorful performance - is responsible for accidents on a daily basis which at times can cost human lives. To gain better insight into the neural signature of cognitive fatigue in the present study we used mEEG to examine the relationship between perceived cognitive fatigue and human-event related brain potentials (ERPs) and electroencephalographic (EEG) oscillations in a sample of 1,000 people.
View Article and Find Full Text PDFAtypical fibroxanthoma (AFX) is a rare cutaneous soft tissue tumor typically occurring in the elderly on sun exposed skin. Histologically, it is composed of pleomorphic, atypical cells with multiple mitoses including atypical mitotic figures resembling undifferentiated malignant tumor. AFX is considered to be a benign tumor with almost uniformly excellent prognosis following conservative therapy if strict diagnostic criteria are applied.
View Article and Find Full Text PDFComparisons between expectations and outcomes are critical for learning. Termed prediction errors, the violations of expectancy that occur when outcomes differ from expectations are used to modify value and shape behaviour. In the present study, we examined how a wide range of expectancy violations impacted neural signals associated with feedback processing.
View Article and Find Full Text PDFAdvancing age is often accompanied by a decline in motor control that results in a decreased ability to successfully perform motor tasks. While there are multiple factors that contribute to age-related deficits in motor control, one unexplored possibility is that age-related deficits in our ability to evaluate motor output result in an increase in motor errors. In line with this, previous work from our laboratory demonstrated that motor errors evoked an error-related negativity (ERN)-a component of the human ERP associated with error evaluation originating within the human medial-frontal cortex.
View Article and Find Full Text PDF