Relativistic kinetic theory is ubiquitous to several fields of modern physics, finding application at large scales in systems in astrophysical contexts, all of the way down to subnuclear scales and into the realm of quark-gluon plasmas. This motivates the quest for powerful and efficient computational methods that are able to accurately study fluid dynamics in the relativistic regime as well as the transition to beyond hydrodynamics-in principle all of the way down to ballistic regimes. We present a family of relativistic lattice kinetic schemes for the efficient simulation of relativistic flows in both strongly (fluid) and weakly (rarefied gas) interacting regimes.
View Article and Find Full Text PDFThe correlation length ξ, a key quantity in glassy dynamics, can now be precisely measured for spin glasses both in experiments and in simulations. However, known analysis methods lead to discrepancies either for large external fields or close to the glass temperature. We solve this problem by introducing a scaling law that takes into account both the magnetic field and the time-dependent spin-glass correlation length.
View Article and Find Full Text PDFWe derive an analytical connection between kinetic relaxation rate and bulk viscosity of a relativistic fluid in spatial dimensions, all the way from the ultra-relativistic down to the near non-relativistic regime. Our derivation is based on both Chapman-Enskog asymptotic expansion and Grad's method of moments. We validate our theoretical results against a benchmark flow, providing further evidence of the correctness of the Chapman-Enskog approach; we define the range of validity of this approach and provide evidence of mounting departures at increasing Knudsen number.
View Article and Find Full Text PDFThe Mpemba effect occurs when a hot system cools faster than an initially colder one, when both are refrigerated in the same thermal reservoir. Using the custom-built supercomputer Janus II, we study the Mpemba effect in spin glasses and show that it is a nonequilibrium process, governed by the coherence length ξ of the system. The effect occurs when the bath temperature lies in the glassy phase, but it is not necessary for the thermal protocol to cross the critical temperature.
View Article and Find Full Text PDFWe introduce a variant of the Hybrid Monte Carlo (HMC) algorithm to address large-deviation statistics in stochastic hydrodynamics. Based on the path-integral approach to stochastic (partial) differential equations, our HMC algorithm samples space-time histories of the dynamical degrees of freedom under the influence of random noise. First, we validate and benchmark the HMC algorithm by reproducing multiscale properties of the one-dimensional Burgers equation driven by Gaussian and white-in-time noise.
View Article and Find Full Text PDF