Publications by authors named "R Tostevin"

Prebiotic systems chemistry suggests that high phosphate concentrations were necessary to synthesise molecular building blocks and sustain primitive cellular systems. However, current understanding of mineral solubility predicts negligible phosphate concentrations for most natural waters, yet the role of Fe, ubiquitous on early Earth, is poorly quantified. Here we determine the solubility of Fe(II)-phosphate in synthetic seawater as a function of pH and ionic strength, integrate these observations into a thermodynamic model that predicts phosphate concentrations across a range of aquatic conditions, and validate these predictions against modern anoxic sediment pore waters.

View Article and Find Full Text PDF

Microbes are known to accumulate intracellular SiO (aq) up to 100s of mmol/l from modern seawater (SiO (aq) <100 µmol/l), despite having no known nutrient requirement for Si. Before the evolution of siliceous skeletons, marine silica concentrations were likely an order of magnitude higher than the modern ocean, raising the possibility that intracellular SiO (aq) accumulation interfered with normal cellular function in non-silicifying algae. Yet, because few culturing studies have isolated the effects of SiO (aq) at high concentration, the potential impact of elevated marine silica on early microbial evolution is unknown.

View Article and Find Full Text PDF

A hypothesized rise in oxygen levels in the Neoproterozoic, dubbed the Neoproterozoic Oxygenation Event, has been repeatedly linked to the origin and rise of animal life. However, a new body of work has emerged over the past decade that questions this narrative. We explore available proxy records of atmospheric and marine oxygenation and, considering the unique systematics of each geochemical system, attempt to reconcile the data.

View Article and Find Full Text PDF

The role of oxygen as a driver for early animal evolution is widely debated. During the Cambrian explosion, episodic radiations of major animal phyla occurred coincident with repeated carbon isotope fluctuations. However, the driver of these isotope fluctuations and potential links to environmental oxygenation are unclear.

View Article and Find Full Text PDF

Namacalathus hermanastes is one of the oldest known skeletal metazoans, found in carbonate settings of the terminal Ediacaran (~550-541 million years ago [Ma]). The palaeoecology of this widespread, goblet-shaped, benthic organism is poorly constrained yet critical for understanding the dynamics of the earliest metazoan communities. Analysis of in situ assemblages from the Nama Group, Namibia (~548-541 Ma), shows that Namacalathus exhibited size variation in response to differing water depths, hydrodynamic conditions and substrate types.

View Article and Find Full Text PDF