Life-threatening Leptospira interrogans navigate a dual existence: surviving in the environment and infecting mammalian hosts. Biofilm formation is presumably an important survival strategy to achieve this process. Understanding the relation between biofilm and virulence might improve our comprehension of leptospirosis epidemiology.
View Article and Find Full Text PDFSci Total Environ
February 2024
Leptospirosis is a zoonosis caused by Leptospira bacteria present in the urine of mammals. Leptospira is able to survive in soils and can be resuspended during rain events. Here, we analyzed the pathogenic Leptospira concentration as a function of hydrological variables in a leptospirosis hot spot.
View Article and Find Full Text PDFMostly studied as a zoonosis, leptospirosis is also an environment-borne infection and most human cases originate from soil or water contaminations. Yet, only few studies have been interested in the survival of pathogenic Leptospira in freshwater. In this study, water microcosms were designed to evaluate the survival and virulence of Leptospira spp.
View Article and Find Full Text PDFBiofilm formation in microtiter plates is certainly the most commonly used method to grow and study biofilm. This simple design is very popular due to its high-throughput screening capacities, low cost, and easy handling. In the protocol described here, we focus on the use of 96-well optically clear, polystyrene flat-bottom plate to study biofilm formation by Leptospira spp.
View Article and Find Full Text PDFMedical microbiology has used phenotypical and metabolic criteria to identify bacterial pathogens for decades. However, no such criteria have been applied to identify leptospires at the species level. In the recent years, matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry (MS) has emerged as new tool for the identification of bacterial species in the medical microbiology laboratory.
View Article and Find Full Text PDF