While rising greenhouse gases cause climate change, global economies ask for resilient solutions for the business of the future. Biomanufacturing may well serve as a pillar of a circular economy with minimised environmental impact. Therefore, innovations of the lab need to successfully bridge the imminent 'death-valley of innovation' for making commercial production happen.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2024
Research for biopharmaceutical production processes with mammalian cells steadily aims to enhance the cell-specific productivity as a means for optimizing total productivities of bioreactors. Whereas current technologies such as pH, temperature, and osmolality shift require modifications of the cultivation medium, the use of optogenetic switches in recombinant producer cells might be a promising contact-free alternative. However, the proper application of optogenetically engineered cells requires a detailed understanding of basic cellular responses of cells that do not yet contain the optogenetic switches.
View Article and Find Full Text PDFYeast extract (YE) is a complex nutritional source associated with high performance on microbial production processes. However, its inherent compositional variability challenges its scalability. While prior efforts have focused on growth-associated products, the dynamics of growth-uncoupled production, which leads to higher production rates and conversion yields, still need to be explored.
View Article and Find Full Text PDFMicrob Biotechnol
November 2024
Microorganisms in large-scale bioreactors are exposed to heterogeneous environmental conditions due to physical mixing constraints. Nutritional gradients can lead to transient expression of energetically wasteful stress responses and as a result, can reduce the titres, rates and yields of a bioprocess at larger scales. To what extent these process parameters are impacted is often unknown and therefore bioprocess scale-up comes with major risk.
View Article and Find Full Text PDFLarge-scale fermentations (»100 m³) often encounter concentration gradients which may significantly affect microbial activities and production performance. Reliably investigating such scenarios in silico would allow to optimize bioproduction. But related simulations are very rare in particular for large bubble columns.
View Article and Find Full Text PDF