Linear and disturbed flow differentially regulate gene expression, with disturbed flow priming endothelial cells (ECs) for a proinflammatory, atheroprone expression profile and phenotype. Here, we investigated the role of the transmembrane protein neuropilin-1 (NRP1) in ECs exposed to flow using cultured ECs, mice with an endothelium-specific knockout of NRP1, and a mouse model of atherosclerosis. We demonstrated that NRP1 was a constituent of adherens junctions that interacted with VE-cadherin and promoted its association with p120 catenin, stabilizing adherens junctions and inducing cytoskeletal remodeling in alignment with the direction of flow.
View Article and Find Full Text PDFSoil and water contamination by numerous pollutants has been increasingly posing threats to food, water, agriculture, and human health. Using novel nanoscale materials to develop rapid electrochemical sensors is very promising due to the discovery of a number of new two-dimensional (2D) electronic materials. Of particular importance is 2D transition-metal carbide that has been shown to possess transformative properties pertaining to its physical, chemical, and environmental characteristics, leading to their potential sensor applications.
View Article and Find Full Text PDFZnO microtubes (MTs) of nanoscale wall thickness were prepared by synthesis of ZnO microrods (MRs) followed by etching the MRs to form MTs. ZnO MRs were synthesized by a simple solution growth method using zinc chloride and hexamine as precursors. Using KOH, ZnO MRs are etched into ZnO MTs.
View Article and Find Full Text PDF