Publications by authors named "R T Mumgaard"

The SPARC tokamak is a high-field, Bt0 ∼12 T, medium-sized, R0 = 1.85 m, tokamak that is presently under construction in Devens, MA, led by Commonwealth Fusion Systems. It will be used to de-risk the high-field tokamak path to a fusion power plant and demonstrate the commercial viability of fusion energy.

View Article and Find Full Text PDF

Divertor detachment and alternative divertor magnetic geometries are predicted to be promising approaches to handle the power exhaust of future fusion devices. In order to understand the detachment process caused by volumetric losses in alternative divertor magnetic geometries, a Multi-Wavelength Imaging (MWI) diagnostic has recently been designed and built for the Mega Amp Spherical Tokamak Upgrade. The MWI diagnostic will simultaneously capture 11 spectrally filtered images of the visible light emitted from divertor plasmas and provide crucial knowledge for the interpretation of observations and modeling efforts.

View Article and Find Full Text PDF

The Multi-Spectral Imaging system is a new diagnostic that captures simultaneous spectrally filtered images from a common line of sight while maintaining a large étendue and high throughput. Imaging several atomic line intensities simultaneously may enable numerous measurement techniques. By making a novel modification of a polychromator layout, the MSI sequentially filters and focuses images onto commercial CMOS cameras while exhibiting minimal vignetting and aberrations.

View Article and Find Full Text PDF

A tokamak-independent analysis suite has been developed to process data from Motional Stark Effect (mse) diagnostics. The software supports multi-spectral line-polarization mse diagnostics which simultaneously measure emission at the mse σ and π lines as well as at two "background" wavelengths that are displaced from the mse spectrum by a few nanometers. This analysis accurately estimates the amplitude of partially polarized background light at the σ and π wavelengths even in situations where the background light changes rapidly in time and space, a distinct improvement over traditional "time-interpolation" background estimation.

View Article and Find Full Text PDF

A multi-spectral line-polarization motional Stark effect (MSE-MSLP) diagnostic has been developed for the Alcator C-Mod tokamak wherein the Stokes vector is measured in multiple wavelength bands simultaneously on the same sightline to enable better polarized background subtraction. A ten-sightline, four wavelength MSE-MSLP detector system was designed, constructed, and qualified. This system consists of a high-throughput polychromator for each sightline designed to provide large étendue and precise spectral filtering in a cost-effective manner.

View Article and Find Full Text PDF