Publications by authors named "R T Morrison"

Objectives/hypothesis: Given the complex pathology underlying unilateral vocal fold paralysis (UVFP), there has been limited systematic exploration of curative treatments in humans. Central to the investigation of experimental therapies includes establishing a reliable and analogous large animal model. The study goal was to create a standardized porcine model of UVFP by establishing characteristic pathophysiology and functional outcomes.

View Article and Find Full Text PDF

Multiferroic materials that exhibit interacting and coexisting properties, like ferroelectricity and ferromagnetism, possess significant potential in the development of novel technologies that can be controlled through the application of external fields. They also exhibit varying regions of polarity, known as domains, with the interfaces that separate the domains referred to as domain walls. In this study, using three-dimensional (3D) bragg coherent diffractive imaging (BCDI), we investigate the dynamics of multiferroic domain walls in a single hexagonal dysprosium manganite (h-DyMnO ) nanocrystal under varying applied electric field.

View Article and Find Full Text PDF

Background And Objectives: Nicotinamide is a coenzyme involved in cellular oxidation-reduction reactions that can inhibit Class III histone deacetylases (HDACs) or sirtuins. HDAC inhibition can affect numerous therapeutic pathways, including tau phosphorylation. We tested the hypothesis that nicotinamide treatment could reduce tau phosphorylation in early Alzheimer disease (AD).

View Article and Find Full Text PDF

Herein we detail the of VU0467319 (VU319), an M Positive Allosteric Modulator (PAM) clinical candidate that successfully completed a Phase I Single Ascending Dose (SAD) clinical trial. VU319 () is a moderately potent M PAM (M PAM EC = 492 nM ± 2.9 nM, 71.

View Article and Find Full Text PDF

Objectives: Recently, our laboratory has discovered a self-innervating population of muscle cells, called motor endplate-expressing cells (MEEs). The cells innately release a wide variety of neurotrophic factors into the microenvironment promoting innervation when used as an injectable treatment. Unlike other stem cells, the therapeutic potential of MEEs is dependent on the cells' ability to maintain phenotypical cell surface proteins in particular motor endplates (MEPs).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: A non-numeric value encountered

Filename: controllers/Author.php

Line Number: 219

Backtrace:

File: /var/www/html/application/controllers/Author.php
Line: 219
Function: _error_handler

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: A non-numeric value encountered

Filename: libraries/Pagination.php

Line Number: 413

Backtrace:

File: /var/www/html/application/controllers/Author.php
Line: 274
Function: create_links

File: /var/www/html/index.php
Line: 316
Function: require_once