The iterative bleaching extends multiplexity (IBEX) Knowledge-Base is a central portal for researchers adopting IBEX and related 2D and 3D immunofluorescence imaging methods. The design of the Knowledge-Base is modeled after efforts in the open-source software community and includes three facets: a development platform (GitHub), static website, and service for data archiving. The Knowledge-Base facilitates the practice of open science throughout the research life cycle by providing validation data for recommended and non-recommended reagents, e.
View Article and Find Full Text PDFBacterial respiratory infections are a major global health concern, often leading to lung injury and triggering lung repair mechanisms. Endogenous epithelial progenitor cells are crucial in this repair, yet the mechanisms remain poorly understood. This study investigates the response of lung epithelial progenitor cells to injury induced by lipopolysaccharide (LPS), a component of gram-negative bacteria, focusing on their regulation during lung repair.
View Article and Find Full Text PDFIn idiopathic pulmonary fibrosis (IPF), epithelial abnormalities are present including bronchiolization and alveolar cell dysfunction. We hypothesized that the IPF microenvironment disrupts normal epithelial growth and differentiation. We mimicked the soluble factors within an IPF microenvironment using an IPF cocktail (IPFc), composed of nine factors which are increased in IPF lungs (CCL2, IL-1β, IL-4, IL-8, IL-13, IL-33, TGF-β, TNFα, and TSLP).
View Article and Find Full Text PDFIntroduction: Exacerbations of chronic obstructive pulmonary disease (COPD) increase mortality risk and can lead to accelerated loss of lung function. The increased inflammatory response during exacerbations contributes to worsening of airflow limitation, but whether it also impacts epithelial repair is unclear. Therefore, we studied the effect of the soluble factor micro-environment during COPD exacerbations on epithelial repair using an exacerbation cocktail (EC), composed of four factors that are increased in COPD lungs during exacerbations (IL-1β, IL-6, IL-8, TNF-α).
View Article and Find Full Text PDFBackground: Interleukin-11 (IL-11) is linked to the pathogenesis of idiopathic pulmonary fibrosis (IPF), since IL-11 induces myofibroblast differentiation and stimulates their excessive collagen deposition in the lung. In IPF there is disrupted alveolar structural architecture, yet the effect of IL-11 on the dysregulated alveolar repair remains to be elucidated.
Methods: We hypothesised that epithelial-fibroblast communication associated with lung repair is disrupted by IL-11.