Progression of cystic kidney disease has been linked to activation of the mTORC1 signaling pathway. Yet the utility of mTORC1 inhibitors to treat patients with polycystic kidney disease remains controversial despite promising preclinical data. To define the cell intrinsic role of mTORC1 for cyst development, the mTORC1 subunit gene Raptor was selectively inactivated in kidney tubular cells lacking cilia due to simultaneous deletion of the kinesin family member gene Kif3A.
View Article and Find Full Text PDFArabinogalactan (AG), extracted from larch wood, is a β-1,3-galactan backbone and β-1,6-galactan side chains with attached α-1-arabinofuranosyl and β-1-arabinopyranosyl residues. Although the structural characteristics of arabinogalactan II type have already been studied, its functionalization using 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) oxidation remains a promising avenue. In this study, the oxidation of AG, a neutral polysaccharide, was carried out using the TEMPO/NaBr/NaOCl system, resulting in polyuronides with improved functional properties.
View Article and Find Full Text PDFIn polycystic kidney disease (PKD), fluid-filled cysts arise from tubules in kidneys and other organs. Human kidney organoids can reconstitute PKD cystogenesis in a genetically specific way, but the mechanisms underlying cystogenesis remain elusive. Here we show that subjecting organoids to fluid shear stress in a PKD-on-a-chip microphysiological system promotes cyst expansion via an absorptive rather than a secretory pathway.
View Article and Find Full Text PDFThe ability to cryopreserve organs would have an enormous impact in transplantation medicine. To investigate organ cryopreservation strategies, experiments are typically done on whole organs, or on cells in 2D culture. Whole organs are not amenable to high throughput investigation, while conventional 2D culture is limited to a single cell type and lacks the complexity of the whole organ.
View Article and Find Full Text PDFThe plasma membrane permeability to water and cryoprotectant (CPA) significantly impacts vitrification efficiency of bovine oocytes. Our study was designed to determine the concentration-dependent permeability characteristics for immature (GV) and mature (MII) bovine oocytes in the presence of ethylene glycol (EG) and dimethyl sulphoxide (MeSO), and to compare two different modeling approaches: the two parameter (2P) model and a nondilute transport model. Membrane permeability parameters were determined by consecutively exposing oocytes to increasing concentrations of MeSO or EG.
View Article and Find Full Text PDF