Publications by authors named "R T Frizzell"

Cell penetrating peptides are unique, 5-30 amino acid long peptides that are able to breach cell membrane barriers and carry cargoes intracellularly in a functional form. Our prior work identified a synthetic, non-naturally occurring 12-amino acid long peptide that we termed cardiac targeting peptide (CTP: APWHLSSQYSRT) due to its ability to transduce cardiomyocytes . Studies looking into its mechanism of transduction identified two lung targeting peptides (LTPs), S7A (APWHLSAQYSRT) and R11A (APWHLSSQYSAT).

View Article and Find Full Text PDF

Most cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that lead to protein misfolding and degradation by the ubiquitin-proteasome system. Previous studies demonstrated that PIAS4 facilitates the modification of wild-type (WT) and F508del CFTR by small ubiquitin-like modifier (SUMO)-1, enhancing CFTR biogenesis by slowing immature CFTR degradation and producing increased immature CFTR band B. We evaluated two correction strategies using misfolding mutants, including the common variant, F508del.

View Article and Find Full Text PDF

Aberrant anion secretion across the bronchial epithelium is associated with airway disease, most notably in cystic fibrosis. Although the cystic fibrosis transmembrane conductance regulator (CFTR) is recognized as the primary source of airway anion secretion, alternative anion transport mechanisms play a contributing role. An alternative anion transporter of growing interest is SLC26A9, a constitutively active chloride channel that has been shown to interact with CFTR and may also contribute to bicarbonate secretion.

View Article and Find Full Text PDF

Cystic fibrosis (CF) occurs as a result of mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which lead to misfolding, trafficking defects, and impaired function of the CFTR protein. Splicing factor proline/glutamine-rich (SFPQ) is a multifunctional nuclear RNA-binding protein (RBP) implicated in the regulation of gene expression pathways and intracellular trafficking. Here, we investigated the role of SFPQ in the regulation of the expression and function of F508del-CFTR in CF lung epithelial cells.

View Article and Find Full Text PDF

A growing number of diseases are linked to the misfolding of integral membrane proteins, and many of these proteins are targeted for ubiquitin-proteasome-dependent degradation. One such substrate is a mutant form of the Cystic Fibrosis Transmembrane Conductance Regulator (F508del-CFTR). Protein folding "correctors" that repair the F508del-CFTR folding defect have entered the clinic, but they are unlikely to protect the entire protein from degradation.

View Article and Find Full Text PDF