The hybrid organic-inorganic halide perovskite (HOIP), for example, MAPbBr, exhibits extended spin lifetime and apparent spin lifetime anisotropy in experiments. The underlying mechanisms of these phenomena remain illusive. By utilizing our first-principles density-matrix dynamics approach with quantum scatterings including electron-phonon and electron-electron interactions and self-consistent spin-orbit coupling, we present temperature- and magnetic field-dependent spin lifetimes in hybrid perovskites, in agreement with experimental observations.
View Article and Find Full Text PDFExploring nonequilibrium hot carriers from plasmonic metal nanostructures is a dynamic field in optoelectronics, with applications including photochemical reactions for solar fuel generation. The hot carrier injection mechanism and the reaction rate are highly impacted by the metal/molecule interaction. However, determining the primary type of reaction and thus the injection mechanism of hot carriers has remained elusive.
View Article and Find Full Text PDFThe accuracy of density-functional theory (DFT) calculations is ultimately determined by the quality of the underlying approximate functionals, namely the exchange-correlation functional in electronic DFT and the excess functional in the classical DFT formalism of fluids. For both electrons and fluids, the exact functional is highly nonlocal, yet most calculations employ approximate functionals that are semi-local or nonlocal in a limited weighted-density form. Machine-learned (ML) nonlocal density-functional approximations show promise in advancing applications of both electronic and classical DFTs, but so far these two distinct research areas have implemented disparate approaches with limited generality.
View Article and Find Full Text PDFDeveloping theoretical understanding of complex reactions and processes at interfaces requires using methods that go beyond semilocal density functional theory to accurately describe the interactions between solvent, reactants and substrates. Methods based on many-body perturbation theory, such as the random phase approximation (RPA), have previously been limited due to their computational complexity. However, this is now a surmountable barrier due to the advances in computational power available, in particular through modern GPU-based supercomputers.
View Article and Find Full Text PDF