Despite pleas to consider both evolutionary and multistressor climate change perspectives to improve ecological risk assessment, the much needed combination of both perspectives is largely missing. This is especially important when evaluating the costs of the evolution of genetic tolerance to pollutants as these costs may become visible only under combined exposure to the pollutant and warming due to energetic constraints. We investigated the costs of chlorpyrifos tolerance in when sequentially exposed to 4-day pesticide treatments and 4-day heat spike treatments.
View Article and Find Full Text PDFIn seasonal environments, organisms with complex life cycles not only contend with seasonal time constraints (TC) but also increasingly face global change stressors that may interfere with responses to TC. Here, we tested how warming and predator stress imposed during the egg and larval stages shaped life history and behavioural responses to TC in the temperate damselfly Ischnura elegans. Eggs from early and late clutches in the season were subjected to ambient and 4 °C warming temperature and the presence or absence of predator cues from perch and signal crayfish.
View Article and Find Full Text PDFMany species sort along environmental gradients, whereby species traits are predicted to shift as integrated sets of life-history, behavioural and physiological traits thereby making up a fast-to-slow pace-of-life continuum. This has also been predicted to cause species differences in stressor sensitivity along such gradients with a faster pace-of-life causing a higher sensitivity. We tested for predictable differences in pace-of-life and in stressor sensitivity for a set of four Lestes damselfly species that separate along the hydroperiod gradient.
View Article and Find Full Text PDFBody size reduction is a universal response to warming, but its ecological consequences across biological levels, from individuals to ecosystems, remain poorly understood. Most biological processes scale with body size, and warming-induced changes in body size can therefore have important ecological consequences. To understand these consequences, we propose a unifying, hierarchical framework for the ecological impacts of intraspecific body size reductions due to thermal plasticity that explicitly builds on three key pathways: morphological constraints, bioenergetic constraints and surface-to-volume ratio.
View Article and Find Full Text PDFThe toxicity of nanoplastics at environmentally relevant concentrations has received widespread attention in the context of global warming. Despite numerous studies on the impact of mean temperature (MT), the effects of daily temperature fluctuations (DTFs) on the ecotoxicity of nanoplastics remains largely unexplored. Moreover, the role of evolutionary adaptation in assessing long-term ecological risks is unclear.
View Article and Find Full Text PDF