Philos Trans A Math Phys Eng Sci
April 2021
The radiative transfer equations are well known, but radiation parametrizations in atmospheric models are computationally expensive. A promising tool for accelerating parametrizations is the use of machine learning techniques. In this study, we develop a machine learning-based parametrization for the gaseous optical properties by training neural networks to emulate a modern radiation parametrization (RRTMGP).
View Article and Find Full Text PDFIn this paper, a simplified model of silicon phase modulators is presented that enables favorable accuracy together with a substantial reduction in computational effort and without the requirement of semiconductor TCAD device simulation software. This permits fast optimization of the different parameters of a modulator. The model was successfully implemented in Phoenix Optodesigner optical software allowing the optimization of silicon phase shifters for different applications.
View Article and Find Full Text PDFProtein detection and characterization based on Broad-band Mach-Zehnder Interferometry is analytically outlined and demonstrated through a monolithic silicon microphotonic transducer. Arrays of silicon light emitting diodes and monomodal silicon nitride waveguides forming Mach-Zehnder interferometers were integrated on a silicon chip. Broad-band light enters the interferometers and exits sinusoidally modulated with two distinct spectral frequencies characteristic of the two polarizations.
View Article and Find Full Text PDFBroad-band Mach-Zehnder interferometry is analytically described and experimentally demonstrated as an analytical tool capable of high accuracy refractive index measurements over a wide spectral range. Suitable photonic engineering of the interferometer sensing and reference waveguides result in sinusoidal TE and TM spectra with substantially different eigen-frequencies. This allows for the instantaneous deconvolution of multiplexed polarizations and enables large spectral shifts and noise reduction through filtering in the Fourier Transform domain.
View Article and Find Full Text PDFArrays of monolithically integrated Mach-Zehnder interferometers were fabricated by standard silicon technology and applied to the label-free real-time monitoring of biomolecular interactions. Chips accommodating 10 MZIs were functionalized with recognition biomolecules and encapsulated in wafer scale. Detection is based on Frequency-Resolved Mach-Zehnder Interferometry, a new concept that takes advantage of the broad-band input spectrum by monitoring the changes for every input frequency.
View Article and Find Full Text PDF