Publications by authors named "R Stocks"

This Article presents two optimized multi-GPU algorithms for Fock matrix construction, building on the work of Ufimtsev and Martinez [ 2009, 5, 1004-1015] and Barca et al. [ 2021, 17, 7486-7503]. The novel algorithms, opt-UM and opt-Brc, introduce significant enhancements, including improved integral screening, exploitation of sparsity and symmetry, a linear scaling exchange matrix assembly algorithm, and extended capabilities for Hartree-Fock caculations up to -type angular momentum functions.

View Article and Find Full Text PDF

This article presents an optimized algorithm and implementation for calculating resolution-of-the-identity Hartree-Fock (RI-HF) energies and analytic gradients using multiple graphics processing units (GPUs). The algorithm is especially designed for high throughput ab initio molecular dynamics simulations of small and medium size molecules (10-100 atoms). Key innovations of this work include the exploitation of multi-GPU parallelism and a workload balancing scheme that efficiently distributes computational tasks among GPUs.

View Article and Find Full Text PDF

This article presents a novel algorithm for the calculation of analytic energy gradients from second-order Møller-Plesset perturbation theory within the Resolution-of-the-Identity approximation (RI-MP2), which is designed to achieve high performance on clusters with multiple graphical processing units (GPUs). The algorithm uses GPUs for all major steps of the calculation, including integral generation, formation of all required intermediate tensors, solution of the Z-vector equation and gradient accumulation. The implementation in the EXtreme Scale Electronic Structure System (EXESS) software package includes a tailored, highly efficient, multistream scheduling system to hide CPU-GPU data transfer latencies and allows nodes with 8 A100 GPUs to operate at over 80% of theoretical peak floating-point performance.

View Article and Find Full Text PDF

Electronic structure calculations have the potential to predict key matter transformations for applications of strategic technological importance, from drug discovery to material science and catalysis. However, a predictive physicochemical characterization of these processes often requires accurate quantum chemical modeling of complex molecular systems with hundreds to thousands of atoms. Due to the computationally demanding nature of electronic structure calculations and the complexity of modern high-performance computing hardware, quantum chemistry software has historically failed to operate at such large molecular scales with accuracy and speed that are useful in practice.

View Article and Find Full Text PDF

We emphasize the benefits of a multidisciplinary team approach to the systemic management of patients with cleft lip and cleft palate (CL/CP) and their families. An ideal team offers support to families at each stage of their child's development and adapts to address new issues that are encountered throughout growth. We suggest the addition of a registered dietitian to the initial phase of the care team to ensure the child consumes adequate macronutrient intake, and to maximize growth and development.

View Article and Find Full Text PDF