Unlabelled: As observed by the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow On (GRACE-FO) missions, global terrestrial water storage (TWS), excluding ice sheets and glaciers, declined rapidly between May 2014 and March 2016. By 2023, it had not yet recovered, with the upper end of its range remaining 1 cm equivalent height of water below the upper end of the earlier range. Beginning with a record-setting drought in northeastern South America, a series of droughts on five continents helped to prevent global TWS from rebounding.
View Article and Find Full Text PDFResearch shows that gene duplication followed by either repurposing or removal of duplicated genes is an important contributor to evolution of gene and protein interaction networks. We aim to identify which characteristics of a network can arise through this process, and which must have been produced in a different way. To model the network evolution, we postulate vertex duplication and edge deletion as evolutionary operations on graphs.
View Article and Find Full Text PDFGlobal sea level provides an important indicator of the state of the warming climate, but changes in regional sea level are most relevant for coastal communities around the world. With improvements to the sea-level observing system, the knowledge of regional sea-level change has advanced dramatically in recent years. Satellite measurements coupled with in situ observations have allowed for comprehensive study and improved understanding of the diverse set of drivers that lead to variations in sea level in space and time.
View Article and Find Full Text PDFThe two dominant drivers of the global mean sea level (GMSL) variability at interannual timescales are steric changes due to changes in ocean heat content and barystatic changes due to the exchange of water mass between land and ocean. With Gravity Recovery and Climate Experiment (GRACE) satellites and Argo profiling floats, it has been possible to measure the relative steric and barystatic contributions to GMSL since 2004. While efforts to "close the GMSL budget" with satellite altimetry and other observing systems have been largely successful with regards to trends, the short time period covered by these records prohibits a full understanding of the drivers of interannual to decadal variability in GMSL.
View Article and Find Full Text PDFThe blood stage of the infection of the malaria parasite exhibits a 48-hour developmental cycle that culminates in the synchronous release of parasites from red blood cells, which triggers 48-hour fever cycles in the host. This cycle could be driven extrinsically by host circadian processes or by a parasite-intrinsic oscillator. To distinguish between these hypotheses, we examine the cycle in an in vitro culture system and show that the parasite has molecular signatures associated with circadian and cell cycle oscillators.
View Article and Find Full Text PDF