Articular cartilage injuries are a common source of joint pain and dysfunction. As articular cartilage is avascular, it exhibits a poor intrinsic healing capacity for self-repair. Clinically, osteochondral grafts are used to surgically restore the articular surface following injury.
View Article and Find Full Text PDFJ Food Sci Technol
October 2021
Films that incorporate antioxidant agents are widely used and improve the stability of food products that are prone to oxidation. This work evaluated the potential antioxidant activity of PVA/gelatine films incorporated with quercetin. The films were prepared by the casting method and characterised by TG-DSC, FTIR spectroscopy, SEM, optical microscopy and swelling index.
View Article and Find Full Text PDFArticular cartilage injuries are a common source of joint pain and dysfunction. We hypothesized that pulsed electromagnetic fields (PEMFs) would improve growth and healing of tissue-engineered cartilage grafts in a direction-dependent manner. PEMF stimulation of engineered cartilage constructs was first evaluated in vitro using passaged adult canine chondrocytes embedded in an agarose hydrogel scaffold.
View Article and Find Full Text PDFArticular cartilage defects are a common source of joint pain and dysfunction. We hypothesized that sustained low-dose dexamethasone (DEX) delivery via an acellular osteochondral implant would have a dual pro-anabolic and anti-catabolic effect, both supporting the functional integrity of adjacent graft and host tissue while also attenuating inflammation caused by iatrogenic injury. An acellular agarose hydrogel carrier with embedded DEX-loaded poly(lactic-co-glycolic) acid (PLGA) microspheres (DLMS) was developed to provide sustained release for at least 99 days.
View Article and Find Full Text PDF