Publications by authors named "R Stanfield"

Mitochondrial membrane phospholipid cardiolipin is essential for the stability of several inner mitochondrial membrane protein complexes. We recently showed that the abundance of mitochondrial magnesium channel MRS2 is reduced in models of Barth syndrome, an X-linked genetic disorder caused by a remodeling defect in cardiolipin. However, the mechanism underlying the reduced abundance of MRS2 in cardiolipin-depleted mitochondria remained unknown.

View Article and Find Full Text PDF

Kinetic stabilization of amyloidogenic immunoglobulin light chains (LCs) through small molecule binding may become the first treatment for the proteinopathy component of light chain amyloidosis (AL). Kinetic stabilizers selectively bind to the native state over the misfolding transition state, slowing denaturation. Prior λ full-length LC dimer (FL LC) kinetic stabilizers exhibited considerable plasma protein binding.

View Article and Find Full Text PDF

Histidine phosphorylation (pHis) is a non-canonical post-translational modification (PTM) that is historically understudied due to a lack of robust reagents that are required for its investigation, such as high affinity pHis-specific antibodies. Engineering pHis-specific antibodies is very challenging due to the labile nature of the phosphoramidate (P-N) bond and the stringent requirements for selective recognition of the two isoforms, 1-phosphohistidine (1-pHis) and 3-phosphohistidine (3-pHis). Here, we present a strategy for engineering of antibodies for detection of native 3-pHis targets.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) cause human respiratory diseases and are major targets for vaccine development. In this study, we design uncleaved prefusion-closed (UFC) trimers for the fusion protein (F) of both viruses by examining mutations critical to F metastability. For RSV, we assess four previous prefusion F designs, including the first and second generations of DS-Cav1, SC-TM, and 847A.

View Article and Find Full Text PDF

Cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS) is an enzyme sensor of double-stranded DNA (dsDNA) that serves to trigger activation of the cGAS-stimulator of interferon genes (STING) pathway. Excessive activation of this pathway has been demonstrated to contribute to various forms of inflammatory disease. As such, cGAS has arisen as a potential therapeutic target with broad potential applications.

View Article and Find Full Text PDF