In the present scenario of research, the recycling of inexpensive widely available agricultural waste/biowaste to activate carbon (AC) and procurement of value-added product has significant impact on energy storage systems, particularly in Electrochemical double layer capacitors (EDLCs). Herein, we report the production of KOH activated carbons from different biomass sources such as stem (MAC), seed oil extract cake (PPC), stem (CCC) and floss (ASC) for the said purpose. Initially, the biomass materials were pyrolyzed at 550 °C and then activated with KOH at 800 °C.
View Article and Find Full Text PDFIn the present study, we attempted to develop novel class of Mycobacterium tuberculosis (Mtb) inhibitors by exploring the pharmaceutically underexploited enzyme targets which are majorly involved in cell wall biosynthesis of mycobacteria. For this purpose glutamate racemase was selected which racemizes d-glutamate from l-glutamate, a key step in peptidoglycan synthesis. Furthermore, enzyme is neither expressed nor its product, d-glutamate is produced in mammals, and hence inhibiting this enzyme will have no vulnerable effect in host organism.
View Article and Find Full Text PDFBackground & Objectives: Clinically, nephrotic syndrome (NS) is a diverse group of symptoms; about 20 per cent of NS cases are resistant to steroid treatment, and within ten years they progress to end-stage renal disease. The present study was undertaken to identify the mutations of Wilms' tumour 1 (WT1) gene in steroid-resistant NS (SRNS) children.
Methods: A total of 173 children with SRNS and 100 children in the control group were enrolled in the study.
Recently numerous non-fluoroquinolone-based bacterial type II topoisomerase inhibitors from both the GyrA and GyrB classes have been reported as antibacterial agents. Inhibitors of the GyrA class include aminopiperidine-based novel bacterial type II topoisomerase inhibitors (NBTIs). However, inhibition of the cardiac ion channel remains a serious liability for the aminopiperidine based NBTIs.
View Article and Find Full Text PDFLysine ɛ-aminotransferase (LAT) is a protein involved in lysine catabolism, and it plays a significant role during the persistent/latent phase of Mycobacterium tuberculosis (MTB), as observed by its up-regulation by ~40-fold during this stage. We have used the crystal structure of MTB LAT in external aldimine form in complex with its substrate lysine as a template to design and identify seven lead compounds with IC50 ranging from 18.06 to > 90 μm.
View Article and Find Full Text PDF