Nanoparticles are exclusively suitable for studying and developing potential therapies against cardiovascular diseases (CVD) because of their size, fine-tunable properties, and ability to incorporate therapeutic and imaging modalities. Recent advancements in nanomaterials open new avenues for treating CVD. In cardiology, the use of nanoparticles and nanocarriers has gathered significant consideration owing to characteristic features such as active and passive targeting to the cardiac tissues, greater target specificity, and sensitivity.
View Article and Find Full Text PDFThe common reason for mortality globally is myocardial infarction. The study aimed to evaluate Passiflora edulis (PE) fruit juice potential in the experimental isoproterenol (ISO) treated rat model to manage myocardial injury. ISO (20 mg/100 g body weight) treated rats showed a significant increment in serum marker enzymes lactate dehydrogenase (LDH) and creatinine kinase (CK), serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT), serum alkaline phosphatase (ALP) and serum acid phosphatase (ACP) activity.
View Article and Find Full Text PDFCardiovasc Drugs Ther
June 2021
The recent emergence of the coronavirus disease 19 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China is now a global health emergency. The transmission of SARS-CoV-2 is mainly via human-to-human contact. This virus is expected to be of zoonotic origin and has a high genome identity to that of bat derived SARS-like coronavirus.
View Article and Find Full Text PDFThe field of nanotechnology has overgrown over the past few years and has even ventured into the field of medicine. The aim of the present study is to develop a novel allicin functionalized locust bean gum nanoparticle using the nanoprecipitation technique. The synthesized nanoparticles were characterized by dynamic light scattering, scanning electron microscopy and transmission electron microscopy.
View Article and Find Full Text PDFThe application of nanotechnology has created high impact in diagnosis and prognosis of various disorders including cardiovascular diseases. In the present study, we investigated the beneficial effect of selenium incorporated guar gum nanoparticles (SGG) compared to nascent selenium (Se) and guar gum nanoparticles (GGN) against ischemiareperfusion (IR) induced alterations in oxidative phosphorylation and energy metabolism in H9c2 cardiac cells. Ischemia and reperfusion were induced for 1h.
View Article and Find Full Text PDF