Publications by authors named "R Songmuang"

We present a set of experimental results showing a combination of various effects, that is, surface recombination velocity, surface charge traps, strain, and structural defects, that govern the carrier dynamics of self-catalyzed GaAs/AlGaAs core-shell nanowires (NWs) grown on a Si(111) substrate by molecular beam epitaxy. Time-resolved photoluminescence of NW ensemble and spatially resolved cathodoluminescence of single NWs reveal that emission intensity, decay time, and carrier diffusion length of the GaAs NW core strongly depend on the AlGaAs shell thickness but in a nonmonotonic fashion. Although 7 nm AlGaAs shell can efficiently suppress the surface recombination velocity of the GaAs NW core, the influence of the surface charge traps and the strain between the core and the shell that redshift the luminescence of the GaAs NW core remain observable in the whole range of the shell thickness.

View Article and Find Full Text PDF

The optical properties of a stack of GaN/AlN quantum discs (QDiscs) in a GaN nanowire have been studied by spatially resolved cathodoluminescence (CL) at the nanoscale (nanoCL) using a scanning transmission electron microscope (STEM) operating in spectrum imaging mode. For the electron beam excitation in the QDisc region, the luminescence signal is highly localized, with spatial extent as low as 5 nm, due to the high band gap difference between GaN and AlN. This allows the discrimination between the emission of neighbouring QDiscs and evidencing the presence of lateral inclusions, about 3 nm thick and 20 nm long rods (quantum rods, QRods), grown unintentionally on the nanowire sidewalls.

View Article and Find Full Text PDF

GaN nanowires (NWs) with an AlN insertion were studied by correlated optoelectronic and aberration-corrected scanning transmission electron microscopy (STEM) characterization on the same single NW. Using aberration-corrected annular bright field and high angle annular dark field STEM, we identify the NW growth axis to be the N-polar [000-1] direction. The electrical transport characteristics of the NWs are explained by the polarization-induced asymmetric potential profile and by the presence of an AlN/GaN shell around the GaN base of the wire.

View Article and Find Full Text PDF

We report on the photocurrent behavior of single GaN n-i-n nanowires (NWs) grown by plasma-assisted molecular-beam epitaxy on Si(111). These structures present a photoconductive gain in the range of 10(5)-10(8) and an ultraviolet (350 nm) to visible (450 nm) responsivity ratio larger than 6 orders of magnitude. Polarized light couples with the NW geometry with a maximum photoresponse for polarization along the NW axis.

View Article and Find Full Text PDF