Aim: Inositol 1,4,5-trisphosphate receptor (IPR) is a ubiquitous calcium (Ca) channel involved in the regulation of cellular fate and motility. Its modulation by anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) plays an important role in cancer progression. Disrupting this interaction could overcome apoptosis avoidance, one of the hallmarks of cancer, and is, thus, of great interest.
View Article and Find Full Text PDFRecent studies have revealed gender differences in cold perception, and pointed to a possible direct action of testosterone (TST) on the cold-activated TRPM8 (Transient Receptor Potential Melastatin Member 8) channel. However, the mechanisms by which TST influences TRPM8-mediated sensory functions remain elusive. Here, we show that TST inhibits TRPM8-mediated mild-cold perception through the noncanonical engagement of the Androgen Receptor (AR).
View Article and Find Full Text PDFParasympathetic regulation of urinary bladder contractions primarily involves acetylcholine release and activation of detrusor smooth muscle (DSM) muscarinic acetylcholine (mACh) receptors. Co-release of ATP and activation of DSM purinergic P2X1-receptors may participate as well in some species. Both types of neuromuscular transmission (NMT) are impaired in diabetes, however, which factors may contribute to such impairment remains poorly understood.
View Article and Find Full Text PDFGenomic instability is a primary cause and fundamental feature of human cancer. However, all cancer cell genotypes generally translate into several common pathophysiological features, often referred to as cancer hallmarks. Although nowadays the catalog of cancer hallmarks is quite broad, the most common and obvious of them are 1) uncontrolled proliferation, 2) resistance to programmed cell death (apoptosis), 3) tissue invasion and metastasis, and 4) sustained angiogenesis.
View Article and Find Full Text PDFDespite the tremendous progress in medicine, cancer remains one of the most serious global health problems awaiting new effective therapies. Here we present ferroquine (FQ), the next generation antimalarial drug, as a promising candidate for repositioning as cancer therapeutics. We report that FQ potently inhibits autophagy, perturbs lysosomal function and impairs prostate tumor growth in vivo.
View Article and Find Full Text PDF