Peripheral nerve injury (PNI) is characterized by a loss of cellular and axonal integrity, often leading to limited functional recovery and pain. Many PNIs are not amenable to repair with traditional techniques; however, cell therapies, particularly Schwann cells (SCs), offer the promise of neural tissue replacement and functional improvement. Exosomes, which carry cellular signaling molecules, can be secreted by SCs and have shown promise in PNI.
View Article and Find Full Text PDFSchwann cells are essential for the maintenance and function of motor neurons, axonal networks, and the neuromuscular junction. In amyotrophic lateral sclerosis, where motor neuron function is progressively lost, Schwann cell function may also be impaired. Recently, important signaling and potential trophic activities of Schwann cell-derived exosomal vesicles have been reported.
View Article and Find Full Text PDFBackground: People living with HIV (PLWH) have substantially increased incidence of anal precancer and cancer. There are very little data regarding genomic disturbances in anal precancers among PLWH. In this study, specific chromosomal variants were identified in anal squamous intraepithelial lesions.
View Article and Find Full Text PDFBackground: Cell-based therapy has emerged as a promising avenue for post-stroke recovery. A significant challenge lies in tracking the distribution and engraftment of transplanted cells within the target cerebral tissue. To address this, we turn to the potential of Brain MRI detection of mesenchymal stem cells (MSCs), achieved by labeling these cells with superparamagnetic iron oxide (SPIO).
View Article and Find Full Text PDFThere is a growing body of evidence that the delivery of cell-derived exosomes normally involved in intracellular communication can reduce secondary injury mechanisms after brain and spinal cord injury and improve outcomes. Exosomes are nanometer-sized vesicles that are released by Schwann cells and may have neuroprotective effects by reducing post-traumatic inflammatory processes as well as promoting tissue healing and functional recovery. The purpose of this study was to evaluate the beneficial effects of human Schwann-cell exosomes (hSC-Exos) in a severe model of penetrating ballistic-like brain injury (PBBI) in rats and investigate effects on multiple outcomes.
View Article and Find Full Text PDF