We have determined the molar proportions of the MUC5AC and MUC6 mucus glycoproteins (mucins) in mucus from the normal and pathological human gastric antrum using a least-squares minimization analysis applied to amino acid compositions. We noted that the content of MUC5AC mucin in mucus from individuals without gastroduodenal disease was very high, suggesting that the integrity and barrier properties of the adherent gastric mucus layer are normally maintained by building-block structures formed from this mucin alone. We observed that the molar content of MUC6 mucin doubled (without significance) in mucus from patients with duodenal ulcer, and increased five times (with high significance) in mucus from patients with gastric ulcer, when compared with that in mucus from individuals without gastroduodenal disease.
View Article and Find Full Text PDFTo clarify further the role of chemotaxis in Helicobacter pylori colonization, the in vitro bacterium response to human plasma and bile (secretions containing chemoeffector compounds that are present in the gastric mucus layer) was examined. Human plasma, after dilution to 1 % (v/v) with buffer, was found to be a chemoattractant for the motile bacillus. Human gall-bladder bile, after dilution to 2 % (v/v) with buffer, was found to be a chemorepellent, but did not cause the motility of the bacillus to be diminished after prolonged exposure.
View Article and Find Full Text PDFBackground: Survival of Helicobacter pylori is dependent upon urease in the cytoplasm and at the bacterial surface. We have sought to clarify how alkaline ammonium salts, released from urea by this enzyme, might alter mucus pH and so affect growth and motility of the bacterium in the gastric mucus environment.
Methods: Experiments were conducted in vitro to determine how the growth and motility of H.
To explore the relationship between Helicobacter pylori motility, morphology and phase of growth, bacteria were isolated from antral biopsies of patients with duodenal ulcer or non-ulcer dyspepsia, and grown in liquid medium in batch and continuous culture systems. Motilities and morphologies of H. pylori in different phases of growth were examined with a Hobson BackTracker and by transmission electron microscopy.
View Article and Find Full Text PDFBackground: Patients with gastroduodenal disease produce gastric mucus of higher viscosity, and mucins that are of a smaller size, than normal. We have modelled these changes to the mucus layer in solutions of methylcellulose, and measured bacterial motility in biopsied mucus, to assess how they might influence the movements of Helicobacter pylori.
Methods: Motilities of Helicobacter pylori were measured in solutions of methylcellulose with molecular mass of 14 and 41 kDa, and in biopsied mucus with a Hobson BacTracker.