Publications by authors named "R Shull"

The intrinsic magnetic low-frequency noise (LFN) is of fundamental scientific interest to the study of magnetic tunnel junctions (MTJs). To gain insight into its mechanism, the fluctuation-dissipation theorem, which describes the linear relation between magnetic LFN and magnetic sensitivity product, has been utilized. However, deviation from the linear correlation has been reported in some studies.

View Article and Find Full Text PDF

Magnetostrictive CoFe films are fully suspended to produce free-standing, clamped-clamped, microbeam resonators. A negative or positive shift in the resonant frequency is observed for magnetic fields applied parallel or perpendicular to the length of the beam, respectively, confirming the magnetoelastic nature of the shift. Notably, the resonance shifts linearly with higher-bias fields oriented perpendicular to the beam's length.

View Article and Find Full Text PDF

We report here on the reproducibility of measurements on a second-order gradiometer superconducting quantum interference device magnetometer of two different yttrium iron garnet spheres, both having a diameter of 1 mm: 1) the National Institute of Standards and Technology magnetic moment standard reference material (SRM) and 2) a commercial sample. It has been suggested that rotating the sample rod around its axis can move the sample center toward the center of the second-order gradiometer coil. The observed value of the magnetic moment will be theoretically a minimum when the radial offset is 0, and this value will increase in a "quadratic" manner with the radial offset.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers investigated the magnetoelastic behavior of multiferroic heterostructures to create energy-efficient, spin-based materials.
  • They found significant magnetostriction effects at the interfaces of (Co/Ni)/Pb(MgNb)O-PbTiO structures, with saturation magnetostriction depending on the thickness of the nickel layer.
  • The interface effects were over 300% larger than those from the bulk material, suggesting potential for developing low-energy, nanoelectronic devices that utilize both magnetic and ferroelectric properties.
View Article and Find Full Text PDF

When a polarized light beam is incident upon the surface of a magnetic material, the reflected light undergoes a polarization rotation. This magneto-optical Kerr effect (MOKE) has been intensively studied in a variety of ferro- and ferrimagnetic materials because it provides a powerful probe for electronic and magnetic properties as well as for various applications including magneto-optical recording. Recently, there has been a surge of interest in antiferromagnets (AFMs) as prospective spintronic materials for high-density and ultrafast memory devices, owing to their vanishingly small stray field and orders of magnitude faster spin dynamics compared to their ferromagnetic counterparts.

View Article and Find Full Text PDF