Publications by authors named "R Shiman"

Many RNA tertiary structures are stable in the presence of monovalent ions alone. To evaluate the degree to which ions at or near the surfaces of such RNAs contribute to stability, the salt-dependent stability of a variety of RNA structures was measured with each of the five group I cations. The stability of hairpin secondary structures and a pseudoknot tertiary structure are insensitive to the ion identity, but the tertiary structures of two other RNAs, an adenine riboswitch and a kissing loop complex, become more stable by 2-3 kcal/mol as ion size decreases.

View Article and Find Full Text PDF

The goal of this review is to present a unified picture of the relationship between ion binding and RNA folding based on recent theoretical and computational advances. In particular, we present a model describing how the association of magnesium ions is coupled to the tertiary structure folding of several well-characterized RNA molecules. This model is developed in terms of the nonlinear Poisson-Boltzmann (NLPB) equation, which provides a rigorous electrostatic description of the interaction between Mg(2+) and specific RNA structures.

View Article and Find Full Text PDF

We previously described a general mutator form of mammalian DNA polymerase beta containing a cysteine substitution for tyrosine 265. Residue 265 localizes to a hydrophobic hinge region predicted to mediate a polymerase conformational change that may aid in nucleotide selectivity. In this study we tested the hypothesis that van der Waals and hydrophobic contacts between Y265 and neighboring residues are important for DNA synthesis fidelity and catalysis, by altering interactions in the hinge domain via substitution at position 265.

View Article and Find Full Text PDF

The effects of monovalent cations (Li(+), Na(+), K(+), Rb(+), Cs(+), and NH4(+)) on the thermal stability of RNA tertiary structure were investigated by UV melting. We show that with the RNA used here (nucleotides 1051-1108 of Escherichia coli 23 S rRNA with four base substitutions), monovalent cations and Mg(2+) compete in stabilizing the RNA tertiary structure, and that the competition takes place between two boundaries: one where Mg(2+) concentration is zero and the other where it is maximally stabilizing ("saturating"). The pattern of competition is the same for all monovalent cations and depends on the cation's ability to displace Mg(2+) from the RNA, its ability to stabilize tertiary structure in the absence of Mg(2+), and its ability to stabilize tertiary structure at saturating Mg(2+) concentrations.

View Article and Find Full Text PDF

Tyrosine in an hepatocyte is transported from the plasma, synthesized from phenylalanine, or released during protein turnover. Effects of phenylalanine and tyrosine on the formation and fate (partitioning) of tyrosine from the different sources were examined in primary rat hepatocyte cultures. Rates of tyrosine degradation, transport, incorporation into and release from protein, and synthesis from phenylalanine were measured as well as the intracellular dilution of labeled tyrosine and phenylalanine incorporated into protein.

View Article and Find Full Text PDF