Publications by authors named "R Seyer"

The frequent emergence of new influenza viruses in the human population underlines the urgent need for antiviral therapeutics in addition to the preventative vaccination against the seasonal flu. To circumvent the development of resistance, recent antiviral approaches target cellular proteins needed by the virus for efficient replication. We investigated the contribution of the small GTPase Rac1 to the replication of influenza viruses.

View Article and Find Full Text PDF

Infections with influenza A viruses (IAV) are still amongst the major causes of highly contagious severe respiratory diseases not only bearing a devastating effect to human health, but also significantly impact the economy. Besides vaccination that represents the best option to protect from IAV infections, only two classes of anti-influenza drugs, inhibitors of the M2 ion channel and the neuraminidase, often causing resistant IAV variants have been approved. That is why the need for effective and amply available antivirals against IAV is of high priority.

View Article and Find Full Text PDF

Influenza impressively reflects the paradigm of a viral disease in which continued evolution of the virus is of paramount importance for annual epidemics and occasional pandemics in humans. Because of the continuous threat of novel influenza outbreaks, it is essential to gather further knowledge about viral pathogenicity determinants. Here, we explored the adaptive potential of the influenza A virus subtype H1N1 variant isolate A/Hamburg/04/09 (HH/04) by sequential passaging in mice lungs.

View Article and Find Full Text PDF

G protein-coupled receptor (GPCR) oligomers have been proposed to play critical roles in cell signaling, but confirmation of their existence in a native context remains elusive, as no direct interactions between receptors have been reported. To demonstrate their presence in native tissues, we developed a time-resolved FRET strategy that is based on receptor labeling with selective fluorescent ligands. Specific FRET signals were observed with four different receptors expressed in cell lines, consistent with their dimeric or oligomeric nature in these transfected cells.

View Article and Find Full Text PDF

Pathogens such as influenza A viruses (IAV) have to overcome a number of barriers defined and maintained by the host, to successfully establish an infection. One of the initial barriers is collectively characterized as the innate immune system. This is a broad anti-pathogen defense program that ranges from the action of natural killer cells to the induction of an antiviral cytokine response.

View Article and Find Full Text PDF