J Mach Learn Biomed Imaging
May 2024
In this study, repetitive transcranial magnetic stimulation was applied to either the right inferior frontal junction or the right inferior parietal cortex during a difficult aerial reconnaissance search task to test its capacity to improve search performance. Two stimulation strategies previously found to enhance cognitive performance were tested: The first is called "addition by subtraction," and the second condition utilizes a direct excitatory approach by applying brief trains of high-frequency repetitive transcranial magnetic stimulation immediately before task trials. In a within-subjects design, participants were given active or sham repetitive transcranial magnetic stimulation at either 1 Hz or at 1 Hz above their individual peak alpha frequency (IAF + 1, mean 11.
View Article and Find Full Text PDFTranscutaneous vagus nerve stimulation (tVNS) is a promising technique for enhancing cognitive performance and skill acquisition. Yet, its efficacy for enhancing learning rate and long-term retention in an ecologically valid learning environment has not been demonstrated. We conducted two double-blind sham-controlled experiments examining the efficacy of auricular tVNS (taVNS: Experiment (1) and cervical tVNS (tcVNS: Experiment (2), on a 5 day second-language vocabulary acquisition protocol among highly selected career linguists at the US Department of Defense's premier language school.
View Article and Find Full Text PDFIntroduction: Ensuring equivalence in high-stakes performance exams is important for patient safety and candidate fairness. We compared inter-school examiner differences within a shared OSCE and resulting impact on students' pass/fail categorisation.
Methods: The same 6 station formative OSCE ran asynchronously in 4 medical schools, with 2 parallel circuits/school.