Publications by authors named "R Schoenlein"

The electronic structure and dynamics of ruthenium complexes are widely studied given their use in catalytic and light-harvesting materials. Here we investigate three model Ru complexes, [Ru(NH)], [Ru(bpy)], and [Ru(CN)], with L-edge 2p3d resonant inelastic X-ray scattering (RIXS) to probe unoccupied 4d valence orbitals and occupied 3d orbitals and to gain insight into the interactions between these levels. The 2p3d RIXS maps contain a higher level of spectral information than the L X-ray absorption near edge structure (XANES).

View Article and Find Full Text PDF

Femtosecond pump-probe spectroscopy using ultrafast optical and infrared pulses has become an essential tool to discover and understand complex electronic and structural dynamics in solvated molecular, biological, and material systems. Here we report the experimental realization of an ultrafast two-color X-ray pump X-ray probe transient absorption experiment performed in solution. A 10 fs X-ray pump pulse creates a localized excitation by removing a 1s electron from an Fe atom in solvated ferro- and ferricyanide complexes.

View Article and Find Full Text PDF

Quantifying charge delocalization associated with short-lived photoexcited states of molecular complexes in solution remains experimentally challenging, requiring local element specific femtosecond experimental probes of time-evolving electron transfer. In this study, we quantify the evolving valence hole charge distribution in the photoexcited charge transfer state of a prototypical mixed valence bimetallic iron-ruthenium complex, [(CN)FeCNRu(NH)], in water by combining femtosecond X-ray spectroscopy measurements with time-dependent density functional theory calculations of the excited-state dynamics. We estimate the valence hole charge that accumulated at the Fe atom to be 0.

View Article and Find Full Text PDF

We demonstrate for the case of photoexcited [Ru(2,2'-bipyridine)] how femtosecond resonant inelastic X-ray scattering (RIXS) at the ligand K-edge allows one to uniquely probe changes in the valence electronic structure following a metal-to-ligand charge-transfer (MLCT) excitation. Metal-ligand hybridization is probed by nitrogen-1s resonances providing information on both the electron-accepting ligand in the MLCT state and the hole density of the metal center. By comparing to spectrum calculations based on density functional theory, we are able to distinguish the electronic structure of the electron-accepting ligand and the other ligands and determine a temporal upper limit of (250 ± 40) fs for electron localization following the charge-transfer excitation.

View Article and Find Full Text PDF

Femtosecond x-ray pump-x-ray probe experiments are currently possible at free electron lasers such as the linac coherent light source, which opens new opportunities for studying solvated transition metal complexes. In order to make the most effective use of these kinds of experiments, it is necessary to determine which chemical properties an x-ray probe pulse will measure. We have combined electron cascade calculations and excited-state time-dependent density functional theory calculations to predict the initial state prepared by an x-ray pump and the subsequent x-ray probe spectra at the Fe K-edge in the solvated model transition metal complex, KFe(CN).

View Article and Find Full Text PDF