Tumor Treating Fields (TTFields) were incorporated into the treatment of glioblastoma, the most malignant brain tumor, after showing an effect on progression-free and overall survival in a phase III clinical trial. The combination of TTFields and an antimitotic drug might further improve this approach. Here, we tested the combination of TTFields with AZD1152, an Aurora B kinase inhibitor, in primary cultures of newly diagnosed (ndGBM) and recurrent glioblastoma (rGBM).
View Article and Find Full Text PDFObjectives: Tumor Treating Fields (TTFields) are low intensity, intermediate frequency, alternating electric fields with antimitotic effects on cancerous cells. TTFields concomitant with pemetrexed and a platinum agent are approved in the US and EU as first line therapy for unresectable, locally advanced or metastatic malignant pleural mesothelioma (MPM). The goal of the current study was to characterize the mechanism of action of TTFields in MPM cell lines and animal models.
View Article and Find Full Text PDFTumor Treating Fields (TTFields) are noninvasive, alternating electric fields within the intermediate frequency range (100-300 kHz) that are utilized as an antimitotic cancer treatment. TTFields are loco-regionally delivered to the tumor region through 2 pairs of transducer arrays placed on the skin. This novel treatment modality has been FDA-approved for use in patients with glioblastoma and malignant pleural mesothelioma based on clinical trial data demonstrating efficacy and safety; and is currently under investigation in other types of solid tumors.
View Article and Find Full Text PDFTumor-treating fields (TTFields) are alternating electric fields in a specific frequency range (100-300 kHz) delivered to the human body through transducer arrays. In this study, we evaluated whether TTFields-mediated cell death can elicit antitumoral immunity and hence would be effectively combined with anti-PD-1 therapy. We demonstrate that in TTFields-treated cancer cells, damage-associated molecular patterns including high-mobility group B1 and adenosine triphosphate are released and calreticulin is exposed on the cell surface.
View Article and Find Full Text PDFTumor Treating Fields (TTFields), an approved treatment modality for glioblastoma, are delivered via non-invasive application of low-intensity, intermediate-frequency, alternating electric fields. TTFields application leads to abnormal mitosis, aneuploidy, and increased cell granularity, which are often associated with enhancement of autophagy. In this work, we evaluated whether TTFields effected the regulation of autophagy in glioma cells.
View Article and Find Full Text PDF