Computer technology-based treatment approaches like intraoperative navigation and intensity-modulated radiation therapy have become important components of state of the art head and neck cancer treatment. Multidirectional exchange of virtual three-dimensional patient data via an interdisciplinary platform allows all medical specialists involved in the patients treatment to take full advantage of these technologies. This review article gives an overview of current technologies and future directions regarding treatment approaches that are based on a virtual, three-dimensional patient specific dataset: storage and exchange of spatial information acquired via intraoperative navigation allow for a highly precise frozen section procedure.
View Article and Find Full Text PDFStimulated Raman Histology (SRH) employs the stimulated Raman scattering (SRS) of photons at biomolecules in tissue samples to generate histological images. Subsequent pathological analysis allows for an intraoperative evaluation without the need for sectioning and staining. The objective of this study was to investigate a deep learning-based classification of oral squamous cell carcinoma (OSCC) and the sub-classification of non-malignant tissue types, as well as to compare the performances of the classifier between SRS and SRH images.
View Article and Find Full Text PDFObjectives: To develop a content-aware chatbot based on GPT-3.5-Turbo and GPT-4 with specialized knowledge on the German S2 Cone-Beam CT (CBCT) dental imaging guideline and to compare the performance against humans.
Methods: The LlamaIndex software library was used to integrate the guideline context into the chatbots.
Purpose: The aim of the study was to assess the deviation between clinical implant axes (CIA) determined by a surgeon during preoperative planning and reconstructed tooth axes (RTA) of missing teeth which were automatically computed by a previously introduced anatomical SSM.
Methods: For this purpose all available planning datasets of single-implant cases of our clinic, which were planned with coDiagnostix Version 9.9 between 2018 and 2021, were collected for retrospective investigation.
Since its discovery in 1989, RNA interference (RNAi) has become a widely used tool for the in vitro downregulation of specific gene expression in molecular biological research. This basically involves a complementary RNA that binds a target sequence to affect its transcription or translation process. Currently, various small RNAs, such as small interfering RNA (siRNA), micro RNA (miRNA), small hairpin RNA (shRNA), and PIWI interacting RNA (piRNA), are available for application on in vitro cell culture, to regulate the cells' gene expression by mimicking the endogenous RNAi-machinery.
View Article and Find Full Text PDF