Hexagonal boron nitride (h-BN) is the only known material aside from graphite with a structure composed of simple, stable, noncorrugated atomically thin layers. While historically used as a lubricant in powder form, h-BN layers have become particularly attractive as an ultimately thin insulator, barrier, or encapsulant. Practically all emerging electronic and photonic device concepts currently rely on h-BN exfoliated from small bulk crystallites, which limits device dimensions and process scalability.
View Article and Find Full Text PDFIn the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials with engineered electronic structure. Here we combine isothermal growth and etching experiments with in situ scanning electron microscopy to reveal the stacking sequence and interlayer coupling strength in few-layer graphene.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
October 2016
Nanocomposite thin films comprised of metastable metal carbides in a carbon matrix have a wide variety of applications ranging from hard coatings to magnetics and energy storage and conversion. While their deposition using nonequilibrium techniques is established, the understanding of the dynamic evolution of such metastable nanocomposites under thermal equilibrium conditions at elevated temperatures during processing and during device operation remains limited. Here, we investigate sputter-deposited nanocomposites of metastable nickel carbide (NiC) nanocrystals in an amorphous carbon (a-C) matrix thermal postdeposition processing via complementary in situ X-ray diffractometry, in situ Raman spectroscopy, and in situ X-ray photoelectron spectroscopy.
View Article and Find Full Text PDFThe dynamics of graphene growth on polycrystalline Pt foils during chemical vapor deposition (CVD) are investigated using in situ scanning electron microscopy and complementary structural characterization of the catalyst with electron backscatter diffraction. A general growth model is outlined that considers precursor dissociation, mass transport, and attachment to the edge of a growing domain. We thereby analyze graphene growth dynamics at different length scales and reveal that the rate-limiting step varies throughout the process and across different regions of the catalyst surface, including different facets of an individual graphene domain.
View Article and Find Full Text PDFHighly controlled Fe-catalyzed growth of monolayer hexagonal boron nitride (h-BN) films is demonstrated by the dissolution of nitrogen into the catalyst bulk via NH3 exposure prior to the actual growth step. This "pre-filling" of the catalyst bulk reservoir allows us to control and limit the uptake of B and N species during borazine exposure and thereby to control the incubation time and h-BN growth kinetics while also limiting the contribution of uncontrolled precipitation-driven h-BN growth during cooling. Using in situ X-ray diffraction and in situ X-ray photoelectron spectroscopy combined with systematic growth calibrations, we develop an understanding and framework for engineering the catalyst bulk reservoir to optimize the growth process, which is also relevant to other 2D materials and their heterostructures.
View Article and Find Full Text PDF