Our study specifically explores the biosynthesis of copper-silver bimetallic nanoparticles (Cu-Ag BMNPs) using Argyreia nervosa (AN) plant leaf green extract as a versatile agent for capping, reducing, and stabilizing. This biosynthesis method is characterized by its simplicity and cost-effectiveness, utilizing silver nitrate (AgNO) and cupric oxide (CuO) as precursor materials. Our comprehensive characterization of the Cu-Ag BMNPs, employing techniques such as X-ray diffraction (XRD), UV-Vis spectrometry, scanning electron microscopy (SEM), Zetasizer, and Fourier transformed infrared spectrometry (FTIR).
View Article and Find Full Text PDFPerovskites have achieved immense progression in optoelectronic device applications owing to their fascinating intrinsic properties. However, the integration of perovskites in lighting applications has been retarded due to the challenges involved in achieving their deep blue light-emitting diodes (LEDs). Unlike other color counterparts, obtaining a stable, defect-tolerant, and high-band gap perovskite material for deep blue emission is an arduous task.
View Article and Find Full Text PDFIn this article we report a new laser processing method, combining the graphitization of polyimide with simultaneous transfer of the graphene patterns to arbitrary substrates. The synthesis conditions are similar to those normally used for the well-known laser-induced graphene method. The approach is based on the enclosure of polyimide sheets between microscope glass slides.
View Article and Find Full Text PDFFront Bioeng Biotechnol
May 2022
Antiviral and non-toxic effects of silver nanoparticles onto cells infected with coronavirus were evaluated in this study using High-Resolution Magic-Angle Spinning Nuclear Magnetic Resonance (HR-MAS NMR) spectroscopy. Silver nanoparticles were designed and synthesized using an orange flavonoid-hesperetin (HST)-for reduction of silver(I) and stabilization of as obtained nanoparticles. The bio-inspired process is a simple, clean, and sustainable way to synthesize biogenic silver nanoparticles (AgNP@HST) with diameters of ∼20 nm and low zeta potential (-40 mV), with great colloidal stability monitored for 2 years.
View Article and Find Full Text PDFFor graphitic materials, Raman technique is a common method for temperature measurements through analysis of phonon frequencies. Temperature () induced downshift of the bond-stretching G mode (ΔG) is well known, but experimentally obtained thermal coefficients ΔG/Δvary considerably between diverse works. Further, ΔG/ΔT coefficients usually were evaluated for relatively low temperatures and found to differ strongly for mono, a few and multilayer graphene.
View Article and Find Full Text PDF