Publications by authors named "R Savitha Mysore"

Unlabelled: Bone marrow adipose tissue (BMAT) has been implicated in a number of conditions associated with bone deterioration and osteoporosis. Several studies have found an inverse relationship between BMAT and bone mineral density (BMD), and higher levels of BMAT in those with prevalent fracture. Magnetic resonance imaging (MRI) is the gold standard for measuring BMAT, but its use is limited by high costs and low availability.

View Article and Find Full Text PDF

MicroRNA-107 (miR-107) plays a regulatory role in obesity and insulin resistance, but the mechanisms of its function in adipocytes have not been elucidated in detail. Here we show that overexpression of miR-107 in pre- and mature human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes attenuates differentiation and lipid accumulation. Our results suggest that miR-107 controls adipocyte differentiation via CDK6 and Notch signaling.

View Article and Find Full Text PDF

Context: Angiopoietin-like 8 (ANGPTL8) has been identified as a key regulator of lipid metabolism.

Design: We addressed the correlation between ANGPTL8 messenger RNA (mRNA) with hallmark insulin-regulated and lipogenic genes in human adipose tissue (AT). The regulation of ANGPTL8 expression in adipocytes was studied after inflammatory challenge, and the role of microRNA (miRNA)-221-3p therein was investigated.

View Article and Find Full Text PDF

Angiopoietin-like 8 (Angptl8) inhibits lipolysis in the circulation together with Angplt3 and controls post-prandial fat storage in white adipose tissue (WAT). It is strongly induced by insulin in vivo in WAT and in vitro in adipocytes. In this study we addressed the function of Angptl8 in adipocytes by its stable lentivirus-mediated knock-down in 3T3-L1 cells, followed by analyses of triglyceride (TG) storage, lipid droplet (LD) morphology, the cellular lipidome, lipolysis, and gene expression.

View Article and Find Full Text PDF

Adipose tissue-related diseases such as obesity and type 2 diabetes are worldwide epidemics. In order to develop adipose tissue cultures in vitro that mimic more faithfully the in vivo physiology, new well-characterized and publicly accepted differentiation methods of human adipose stem cells are needed. The aims of this study are (1) to improve the existing natural adipose tissue extract (ATE)-based induction method and (2) to study the effects of a differentiation method on insulin responsiveness of the resulting adipocytes.

View Article and Find Full Text PDF