To shed light on how axonal transport is regulated, we examined the possible roles of protein kinase A (PKA) in vivo suggested by our previous work (Sato-Yoshitake et al., 1992). Pharmacological probes or the purified catalytic subunit of PKA were applied to the permeabilized-reactivated model of crayfish walking leg giant axon, and the effect was monitored by the quantitative video-enhanced light microscopy and the quantitative electron microscopy.
View Article and Find Full Text PDFKinesin is known as a representative cytoskeletal motor protein that is engaged in cell division and axonal transport. In addition to the mutant assay, recent advances using the PCR cloning technique have elucidated the existence of many kinds of kinesin-related proteins in yeast, Drosophila, and mice. We previously cloned five different members of kinesin superfamily proteins (KIFs) in mouse brain (Aizawa, H.
View Article and Find Full Text PDFTo further elucidate the mechanism of organelle transport, we cloned a novel member of the mouse kinesin superfamily, KIF1B. This N-terminal-type motor protein is expressed ubiquitously in various kinds of tissues. In situ hybridization revealed that KIF1B is expressed abundantly in differentiated nerve cells.
View Article and Find Full Text PDFThe tau gene encodes a protein (Tau) that is a major neuronal microtubule-associated protein localized mostly in axons. It has microtubule-binding and tubulin-polymerizing activity in vitro and is thought to make short crossbridges between axonal microtubules. Further, tau-transfected non-neuronal cells extend long axon-like processes in which microtubule bundles resembling those in axons are formed.
View Article and Find Full Text PDFNeurons are highly polarized cells composed of dendrites, cell bodies, and long axons. Because of the lack of protein synthesis machinery in axons, materials required in axons and synapses have to be transported down the axons after synthesis in the cell body. Fast anterograde transport conveys different kinds of membranous organelles such as mitochondria and precursors of synaptic vesicles and axonal membranes, while organelles such as endosomes and autophagic prelysosomal organelles are conveyed retrogradely.
View Article and Find Full Text PDF