Publications by authors named "R Santiago-Mozos"

Accurate identification of Perinatal Hypoxia from visual inspection of Fetal Heart Rate (FHR) has been shown to have limitations. An automated signal processing method for this purpose needs to deal with time series of different lengths, recording interruptions, and poor quality signal conditions. We propose a new method, robust to those issues, for automated detection of perinatal hypoxia by analyzing the FHR during labor.

View Article and Find Full Text PDF

Background: Fast and accurate quality estimation of the electrocardiogram (ECG) signal is a relevant research topic that has attracted considerable interest in the scientific community, particularly due to its impact on tele-medicine monitoring systems, where the ECG is collected by untrained technicians. In recent years, a number of studies have addressed this topic, showing poor performance in discriminating between clinically acceptable and unacceptable ECG records.

Methods: This paper presents a novel, simple and accurate algorithm to estimate the quality of the 12-lead ECG by exploiting the structure of the cross-covariance matrix among different leads.

View Article and Find Full Text PDF

The current development of cloud computing is completely changing the paradigm of data knowledge extraction in huge databases. An example of this technology in the cardiac arrhythmia field is the SCOOP platform, a national-level scientific cloud-based big data service for implantable cardioverter defibrillators. In this scenario, we here propose a new methodology for automatic classification of intracardiac electrograms (EGMs) in a cloud computing system, designed for minimal signal preprocessing.

View Article and Find Full Text PDF

Automated screening systems are commonly used to detect some agent in a sample and take a global decision about the subject (e.g., ill/healthy) based on these detections.

View Article and Find Full Text PDF

In some applications, the probability of error of a given classifier is too high for its practical application, but we are allowed to gather more independent test samples from the same class to reduce the probability of error of the final decision. From the point of view of hypothesis testing, the solution is given by the Neyman-Pearson lemma. However, there is no equivalent result to the Neyman-Pearson lemma when the likelihoods are unknown, and we are given a training dataset.

View Article and Find Full Text PDF