With ongoing global warming, increasing water deficits promote physiological stress on forest ecosystems with negative impacts on tree growth, vitality, and survival. How individual tree species will react to increased drought stress is therefore a key research question to address for carbon accounting and the development of climate change mitigation strategies. Recent tree-ring studies have shown that trees at higher latitudes will benefit from warmer temperatures, yet this is likely highly species-dependent and less well-known for more temperate tree species.
View Article and Find Full Text PDFOngoing climatic change is threatening the survival of drought-sensitive tree species, such as silver fir (). Drought-induced dieback had been previously explored in this conifer, although the role played by tree-level genetic diversity and its relationship with growth patterns and soil microsite conditions remained elusive. We used double digest restriction-site-associated DNA sequencing (ddRADseq) to describe different genetic characteristics of five silver fir forests in the Spanish Pyrenees, including declining and non-declining trees.
View Article and Find Full Text PDFThe frequency and intensity of drought events are increasing worldwide, challenging the adaptive capacity of several tree species. Here, we evaluate tree growth patterns and climate sensitivity to precipitation, temperature, and drought in the relict Moroccan fir . We selected two study sites, formerly stated as harboring contrasting taxa ( and , respectively).
View Article and Find Full Text PDFThe analysis of climate variability and development of reconstructions based on tree-ring records in tropical forests have been increasing in recent decades. In the Amazon region, ring width and stable isotope long-term chronologies have been used for climatic studies, however little is known about the potential of wood traits such as density and chemical concentrations. In this study, we used well-dated rings of Cedrela fissilis Vell.
View Article and Find Full Text PDFLong-term records of tree-ring width (TRW), latewood maximum density (MXD) and blue intensity (BI) measurements on conifers have been largely used to develop high-resolution temperature reconstructions in cool temperate forests. However, the potential of latewood blue intensity (LWBI), less commonly used earlywood blue intensity (EWBI), and delta (difference between EWBI and LWBI, dBI) blue intensity in Mediterranean tree species is still unexplored. Here we developed BI chronologies in moist-elevation limits of the most southwestern European distribution of Pinus nigra subsp.
View Article and Find Full Text PDF