Publications by authors named "R Salas-Montiel"

We present the design of an on-chip integrated photon pair source based on Spontaneous Four Wave Mixing (SFWM), implemented on a ring resonator in the 4H Silicon Carbide On Insulator (4H-SiCOI) platform, compatible with a solid state quantum memory in the telecommunications band. Through careful engineering of the waveguide dispersion and micro-ring resonator dimensions, we found solutions where the signal photons are emitted at 1536.48 nm with a bandwidth of MHz, enabling the interaction with the hyperfine structure of Er ions.

View Article and Find Full Text PDF

We report the design of an integrated photon pair source based on spontaneous four-wave mixing (SFWM), implemented in an integrated micro-ring resonator in the silicon nitride platform (SiN). The signal photon is generated with emission at 606 nm and bandwidth of 3.98 MHz, matching the spectral properties of praseodymium ions (Pr), while the idler photon is generated at 1430.

View Article and Find Full Text PDF

Two-dimensional transition-metal dichalcogenides have attracted significant attention because of their unique intrinsic properties, such as high transparency, good flexibility, atomically thin structure, and predictable electron transport. However, the current state of device performance in monolayer transition-metal dichalcogenide-based optoelectronics is far from commercialization, because of its substantial strain on the heterogeneous planar substrate and its robust metal deposition, which causes crystalline damage. In this study, we show that strain-relaxed and undamaged monolayer WSe can improve a device performance significantly.

View Article and Find Full Text PDF

In this contribution, we numerically demonstrate the generation of plasmonic transparency windows in the transmission spectrum of an integrated metaphotonic device. The hybrid photonic-plasmonic structure consists of two rectangular-shaped gold nanoparticles fully embedded in the core of a multimode dielectric optical waveguide, with their major axis aligned to the electric field lines of transverse electric guided modes. We show that these transparencies arise from different phenomena depending on the symmetry of the guided modes.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are exploring how to manipulate light in very small (subwavelength) structures made of dielectric materials, which can lead to low-loss nanoantennas for routing light in visible and telecom ranges.
  • Several previous studies focused on light scattering using basic multipole moments, but this study goes further by incorporating magnetic quadrupole moments as well.
  • The findings detail specific interference conditions that optimize the scattering directionality in a V-shaped silicon nanoantenna, potentially enhancing applications in light routing based on different polarizations or wavelengths.
View Article and Find Full Text PDF