Publications by authors named "R Sadir"

Heparan sulfates are complex polysaccharides that mediate the interaction with a broad range of protein ligands at the cell surface. A key step in heparan sulfate biosynthesis is catalyzed by the bi-functional glycosyltransferases EXT1 and EXT2, which generate the glycan backbone consisting of repeating N-acetylglucosamine and glucuronic acid units. The molecular mechanism of heparan sulfate chain polymerization remains, however, unknown.

View Article and Find Full Text PDF

Heparan sulfate chains are complex and structurally diverse polysaccharides that interact with a large number of proteins, thereby regulating a vast array of biological functions. Understanding this activity requires obtaining oligosaccharides of defined structures. Here we describe methods for isolating, engineering, and characterizing heparan sulfate-derived oligosaccharides and approaches based on high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), and bio-layer interferometry (BLI) to study their structures, modifications, and interactions.

View Article and Find Full Text PDF

Differential sensing of proteins based on cross-reactive arrays and pattern recognition is a promising technique for the detection and identification of proteins. In this study, a rational biomimetic strategy has been used to prepare sensing materials capable of discriminating structurally similar proteins, such as deletion and point mutants of a cytokine, by mimicking the biological properties of heparan sulfate (HS). Using the self-assembly of two disaccharides, lactose and sulfated lactose at various ratios on the surface of a chip, an array of combinatorial cross-reactive receptors has been prepared.

View Article and Find Full Text PDF

Glycosylation is a common and widespread post-translational modification that affects a large majority of proteins. Of these, a small minority, about 20, are specifically modified by the addition of heparan sulfate, a linear polysaccharide from the glycosaminoglycan family. The resulting molecules, heparan sulfate proteoglycans, nevertheless play a fundamental role in most biological functions by interacting with a myriad of proteins.

View Article and Find Full Text PDF

Cyt1Aa is the one of four crystalline protoxins produced by mosquitocidal bacterium Bacillus thuringiensis israelensis (Bti) that has been shown to delay the evolution of insect resistance in the field. Limiting our understanding of Bti efficacy and the path to improved toxicity and spectrum has been ignorance of how Cyt1Aa crystallizes in vivo and of its mechanism of toxicity. Here, we use serial femtosecond crystallography to determine the Cyt1Aa protoxin structure from sub-micron-sized crystals produced in Bti.

View Article and Find Full Text PDF