Publications by authors named "R S Traylor"

Working, sporting, and companion dogs require muscular fitness to perform their daily tasks, competitive activities, and operational functions effectively and with a low risk of injury. There are currently no methods to measure the muscular fitness of dogs who are not debilitated. Sprint performance is highly correlated with muscular fitness in humans, and various sprint assessments are used to measure performance for sporting and tactical athletes.

View Article and Find Full Text PDF

The electronic Seebeck response in a conductor involves the energy-dependent mean free path of the charge carriers and is affected by crystal structure, scattering from boundaries and defects, and strain. Previous photothermoelectric (PTE) studies have suggested that the thermoelectric properties of polycrystalline metal nanowires are related to grain structure, although direct evidence linking crystal microstructure to the PTE response is difficult to elucidate. Here, we show that room temperature scanning PTE measurements are sensitive probes that can detect subtle changes in the local Seebeck coefficient of gold tied to the underlying defects and strain that mediate crystal deformation.

View Article and Find Full Text PDF

Background: Mucosal immunity, including secretory IgA (sIgA), plays an important role in early defenses against respiratory pathogens. Salivary testing, the most convenient way to measure sIgA, has been used to characterize mucosal immune responses to many viral infections including SARS, MERS, influenza, HIV, and RSV. However, its role has not yet been characterized in the COVID-19 pandemic.

View Article and Find Full Text PDF

Chemical short-range order (SRO) within a nominally single-phase solid solution is known to affect the mechanical properties of alloys. While SRO has been indirectly related to deformation, direct observation of the SRO domain structure, and its effects on deformation mechanisms at the nanoscale, has remained elusive. Here, we report the direct observation of SRO in relation to deformation using energy-filtered imaging in a transmission electron microscope (TEM).

View Article and Find Full Text PDF

The study of grain boundaries is the foundation to understanding many of the intrinsic physical properties of bulk metals. Here, the preparation of microscale thin-film gold bicrystals, using rapid melt growth, is presented as a model system for studies of single grain boundaries. This material platform utilizes standard fabrication tools and supports the high-yield growth of thousands of bicrystals per wafer, each containing a grain boundary with a unique <111> tilt character.

View Article and Find Full Text PDF