Rationale: (18)F fluorodeoxyglucose positron emission tomography ((18)F FDG-PET) facilitates examination of glucose metabolism. Previously, we described regional cerebral glucose hypometabolism using (18)F FDG-PET in patients with Glucose transporter 1 Deficiency Syndrome (Glut1 DS). We now expand this observation in Glut1 DS using quantitative image analysis to identify the epileptic network based on the regional distribution of glucose hypometabolism.
View Article and Find Full Text PDFPurpose: The participation in concussive susceptible sports such as boxing may cause chronic traumatic brain injury. The objective of this study was to determine whether there are unique patterns of reduced brain glucose metabolism in professional and amateur boxers.
Method: We compared the fluorine-18 fluorodeoxyglucose (F-18 FDG) PET brain scans of boxers (group) (N=19) with those of controls (group) (N=7) using both statistical parametric mapping and region of interest analysis.
Objective: [(18)F]Fluorodeoxyglucose positron emission tomography ([(18)F]FDG-PET) is a valuable method for detecting focal brain dysfunction associated with epilepsy. Evidence suggests that a progressive decrease in [(18)F]FDG uptake occurs in the epileptogenic cortex with an increase in the duration of epilepsy. In this study, our aim was to use statistical parametric mapping (SPM) to test the validity of this relationship in a retrospective study of patients with temporal lobe epilepsy (TLE).
View Article and Find Full Text PDF