In this paper, using hydrodynamic entropy, we quantify multiscale disorder in Euler and hydrodynamic turbulence. These examples illustrate that the hydrodynamic entropy is not extensive because it is not proportional to the system size. Consequently, we cannot add hydrodynamic and thermodynamic entropies, which measure disorder at macroscopic and microscopic scales, respectively.
View Article and Find Full Text PDFThe work provides a comprehensive explanation of the nature of chemical bonding through quantum chemical topology for multilayers of AB compounds, such as GaSe, InSe, and GaTe, spanning pressures from 0 GPa to 30 GPa. These compounds are subjected to pressure orthogonal to the multilayers. Quantum chemical topological indices indicate that uniaxial pressure induces changes in hybridisation, leading to the disappearance of interlayer van der Waals forces.
View Article and Find Full Text PDFThis study discovers a statistically and economically significant intraday anomaly on Bitcoin markets. Positive returns of 0.58 bps per minute are disproportionately concentrated at the turn of 15-min candles (in minutes 0, 15, 30, and 45 of each trading hour).
View Article and Find Full Text PDFMicrovasc Res
September 2019
Pre-study calculations of the required sample size are vital to a large majority of studies. Using the method based on the Monte-Carlo simulations, we have illustrated how the sample size is related to the statistic power value, the significance level, the variability of observations and the minor magnitude of the effect of interest under study. If the study has been already completed, one should not perform any 'post hoc' power calculations.
View Article and Find Full Text PDFBackground: Impedance cardiography (ICG) is an inexpensive, noninvasive technique for estimating hemodynamic parameters. ICG can be used to obtain the ejection fraction of the left atrium and to monitor systolic time intervals. Traditional ICG technique does not enable unambiguous detection of the left ventricle ejection time (LVET) and the time relationships between specific marker points.
View Article and Find Full Text PDF