The Heisenberg uncertainty principle dictates that the position and momentum of an object cannot be simultaneously measured with arbitrary precision, giving rise to an apparent limitation known as the standard quantum limit (SQL). Gravitational-wave detectors use photons to continuously measure the positions of freely falling mirrors and so are affected by the SQL. We investigated the performance of the Laser Interferometer Gravitational-Wave Observatory (LIGO) after the experimental realization of frequency-dependent squeezing designed to surpass the SQL.
View Article and Find Full Text PDFIntroduction: Bardet-Biedl syndrome (BBS) is a rare genetic disease associated with hyperphagia, a pathologic insatiable hunger, due to impaired signaling in the melanocortin-4 receptor (MC4R) pathway. The impact of hyperphagia on the lives of patients with BBS and their families has not been fully characterized.
Methods: Patients with BBS or their caregivers who participated in clinical trials of the MC4R agonist setmelanotide (NCT03013543 and NCT03746522) were included in this qualitative study.
High-quality optical resonant cavities require low optical loss, typically on the scale of parts per million. However, unintended micron-scale contaminants on the resonator mirrors that absorb the light circulating in the cavity can deform the surface thermoelastically and thus increase losses by scattering light out of the resonant mode. The point absorber effect is a limiting factor in some high-power cavity experiments, for example, the Advanced LIGO gravitational-wave detector.
View Article and Find Full Text PDF