The tumor suppressor TP53 gene, the most frequently mutated gene in human cancers, produces the product tumor protein p53, which plays an essential role in DNA damage. p53 protein mutations may contribute to tumorigenesis by loss of tumor suppressive functions and malignancy of cancer cells via gain-of-oncogenic functions. We previously reported that mutant p53 proteins form aggregates and that cytoplasmic p53 aggregates were associated with poor prognosis in human ovarian cancer.
View Article and Find Full Text PDFBackground: Immunohistochemistry for p53 was a well-established method for cancer diagnosis in pathology. Aberrant cytoplasmic p53 positivity reflects the accumulation of p53 aggregates, which has been shown to be associated with chemoresistance and to be a predictive marker of a worse clinical course in ovarian cancer.
Case Report: A 65-year-old Japanese man was diagnosed with lung cancer, and surgical resection was performed.
Diffusion MRI has provided insight into the widespread structural connectivity changes that characterize epilepsies. Although syndrome-specific white matter abnormalities have been demonstrated, studies to date have predominantly relied on statistical comparisons between patient and control groups. For diffusion MRI techniques to be of clinical value, they should be able to detect white matter microstructural changes in individual patients.
View Article and Find Full Text PDF