Publications by authors named "R S Marjoribanks"

The development of bright free-electron lasers (FEL) has revolutionized our ability to create and study matter in the high-energy-density (HED) regime. Current diagnostic techniques have been successful in yielding information on fundamental thermodynamic plasma properties, but provide only limited or indirect information on the detailed quantum structure of these systems, and on how it is affected by ionization dynamics. Here we show how the valence electronic structure of solid-density nickel, heated to temperatures of around 10 of eV on femtosecond timescales, can be probed by single-shot resonant inelastic x-ray scattering (RIXS) at the Linac Coherent Light Source FEL.

View Article and Find Full Text PDF

High-repetition-rate burst-mode ultrafast-laser ablation and disruption of biological tissues depends on interaction of each pulse with the sample, but under those particular conditions which persist from previous pulses. This work characterizes and compares the dynamics of absorption and scattering of a 133-MHz repetition-rate, burst-mode ultrafast-pulse laser, in agar hydrogel targets and distilled water. The differences in energy partition are quantified, pulse-by-pulse, using a time-resolving integrating-sphere-based device.

View Article and Find Full Text PDF

We describe an energy-partition diagnostic based on integrating sphere principle for measuring absorption and scattering in plasma-mediated ablation by a high repetition-rate (133 MHz), pulsetrain-burst ultrafast-pulse laser. The system time-resolves the partition of elastically scattered laser light into specular reflection, diffuse reflection, and transmission, giving access to per-pulse absorption dynamics. Physical events such as optical breakdown and incubation effects in glass and aluminum are illustrated.

View Article and Find Full Text PDF

A 3D living-cell culture in hydrogel has been developed as a standardized low-tensile-strength tissue proxy for study of ultrafast, pulsetrain-burst laser-tissue interactions. The hydrogel is permeable to fluorescent biomarkers and optically transparent, allowing viable and necrotic cells to be imaged in 3D by confocal microscopy. Good cell-viability allowed us to distinguish between typical cell mortality and delayed subcellular tissue damage (e.

View Article and Find Full Text PDF

Reflecting light from a mirror moving close to the speed of light has been envisioned as a route towards producing bright X-ray pulses since Einstein's seminal work on special relativity. For an ideal relativistic mirror, the peak power of the reflected radiation can substantially exceed that of the incident radiation due to the increase in photon energy and accompanying temporal compression. Here we demonstrate for the first time that dense relativistic electron mirrors can be created from the interaction of a high-intensity laser pulse with a freestanding, nanometre-scale thin foil.

View Article and Find Full Text PDF