Single-atom-based Metal-Organic Frameworks (MOFs) hold great promising candidates for heterogeneous catalysis, demonstrating outstanding catalytic activity and exceptional product selectivity. This is attributed to their optimal atom utilization, high surface energy, and the presence of unsaturated coordination environments. Here in, we have developed a nickel single-atom catalyst (SAC) featuring Ni single atoms covalently attached to defect-engineered Zr-oxide clusters within the stable UiO-66 (Universitetet i Oslo) framework, synthesized via a straightforward solution impregnation method (denoted as UiO-66/Ni now onwards).
View Article and Find Full Text PDFThe binding free energy of hydrogen-bonded complexes is generally inversely proportional to the solvent dielectric constant. This occurs because the solvent-accessible surface area of the complex is always smaller than that of the individual subsystems, leading to a reduction in solvation energy. The present study explores the potential for stabilizing hydrogen-bonded complexes in a solvent with higher polarity.
View Article and Find Full Text PDFIn this report, we successfully engineered a novel probe based on an acceptor-donor-acceptor (A-D-A) architecture featuring dicyanovinyl-substituted thieno[3,2-]thiophene, termed DCVTT. The designed probe self-assembles into luminous nanoparticles (DCVTT NPs) upon introducing mixed aqueous solutions. These fluorescent nanostructures served as a ratiometric probe for detecting cyanide (CN) ions in aqueous-based environments, owing to the robust Intramolecular Charge Transfer (ICT) characteristics of DCVTT.
View Article and Find Full Text PDF