Publications by authors named "R S Kovylin"

The development of photocurable compositions is in high demand for the manufacture of functional materials for electronics, optics, medicine, energy, etc. The properties of the final photo-cured material are primarily determined by the initial mixture, which needs to be tuned for each application. In this study we propose to use simple systems based on di(meth)acrylate, polyimide and photoinitiator for the preparation of new photo-curable compositions.

View Article and Find Full Text PDF

This paper provides a study of two bone substitutes: a hybrid porous polymer and an osteoplastic matrix based on a bovine-derived xenograft. Both materials are porous, but their pore characteristics are different. The osteoplastic matrix has pores of 300-600 µm and the hybrid polymer has smaller pores, generally of 6-20 µm, but with some pores up to 100 µm across.

View Article and Find Full Text PDF

Hybrid porous polymers based on poly-EGDMA and polylactide containing vancomycin, the concentration of which in the polymer varied by two orders of magnitude, were synthesized. The processes of polymer biodegradation and vancomycin release were studied in the following model media: phosphate-buffered saline (PBS), trypsin-Versene solution, and trypsin-PBS solution. The maximum antibiotic release was recorded during the first 3 h of extraction.

View Article and Find Full Text PDF

Porous polymer monoliths with thicknesses of 2 and 4 mm were obtained via polymerization of ethylene glycol dimethacrylate (EGDMA) under the influence visible-light irradiation in the presence of a 70 wt% 1-butanol porogenic agent and o-quinone photoinitiators. The o-quinones used were: 3,5-di-tret-butyl-benzoquinone-1,2 (35Q), 3,6-di-tret-butyl-benzoquinone-1,2 (36Q), camphorquinone (CQ), and 9,10-phenanthrenequinone (PQ). Porous monoliths were also synthesized from the same mixture but using 2,2'-azo-bis(iso-butyronitrile) (AIBN) at 100 °C instead o-quinones.

View Article and Find Full Text PDF

Porous polymer monolith materials of 2-mm thickness were obtained by visible light-induced radical polymerization of oligocarbonate dimethacrylate (OCM-2) in the presence of 1-butanol (10 to 70 wt %) as a porogenic additive. The pore characteristics and morphology of polymers were studied by mercury intrusion porosimetry and scanning electron microscopy. Monolithic polymers with both open and closed pores up to 100 nm in size are formed when the alcohol content in the initial composition is up to 20 wt %.

View Article and Find Full Text PDF