Publications by authors named "R S Kalubarme"

TiC-X MXenes have attracted tremendous research interest because their 2D laminar morphology provides numerous functional applications. The application options rely on the purity and interlayer spacing of MXenes, which eventually depend on the purity of the MAX phase. This motivated us to synthesize pure MAX phases to produce MXenes at large scale using simpler and less expensive techniques.

View Article and Find Full Text PDF

Sodium-ion batteries (SIBs) are emerging as the best replacement for Li-ion batteries. In this regard, research on developing a reliable cathode material for SIBs is burgeoning. Rhombohedral NaV(PO) (NVP), is a typical sodium super ionic conductor (NASICON) type material having prominent usage as a cathode material for SIBs.

View Article and Find Full Text PDF

The study presents a novel, one-pot, and scalable solid-state reaction scheme to prepare bismuth sulphide (BiS)-reduced graphene oxide (rGO) nanocomposites using bismuth oxide (BiO), thiourea (TU), and graphene oxide (GO) as starting materials for energy storage applications. The impact of GO loading concentration on the electrochemical performance of the nanocomposites was investigated. The reaction follows a diffusion substitution pathway, gradually transforming BiO powder into BiS nanostrips, concurrently converting GO into rGO.

View Article and Find Full Text PDF

A 3D framework with Nasicon structured polyanionic NaV(PO) (NVP) has been emphasized as a leading cathode material for sodium-ion batteries (SIBs) due to its high working voltage plateau, structural stability, and good rate performance. Herein, pristine NVP and MWCNT@NVP composite synthesized via a facile solid-state method are examined and compared as cathode materials for Na-ion batteries. The morphological study confirms the uniform distribution of MWCNTs in the pristine NVP structure.

View Article and Find Full Text PDF

Aqueous zinc-ion batteries (ZIBs) provide a safer and cost-effective energy storage solution by utilizing nonflammable water-based electrolytes. Although many research efforts are focused on optimizing zinc anode materials, developing suitable cathode materials is still challenging. In this study, one-dimensional, mixed-phase MnO nanorods are synthesized using ionic liquid (IL).

View Article and Find Full Text PDF