Publications by authors named "R S GURD"

Active glucagon receptor was solubilized with 3-(3-cholamidopropyl)dimethylammonio-1-propanesulfonate (Chaps) from rat liver plasma membranes but rapidly (less than 8 h) lost activity. Either inclusion of 1X Hanks' balanced salt solution in the 3 mM Chaps solubilization buffer or its addition after solubilization increased the percentage of total binding attributable to specific glucagon binding from approximately 10 to greater than 80%; of great importance, it increased the stability from near zero binding at 8 h to 50% binding at 48 h (4 degrees C). Of the Hanks' solution components, either NaCl (137 mM) or CaCl2 (1.

View Article and Find Full Text PDF

Biochemical methods have been used to quantitate total, acid-stable and acid-labile association of (mono[125I]iodoTyr10) glucagon with rat hepatocytes in suspension to evaluate internalization of glucagon and its receptors. Internalization is inhibited by low temperature, phenylarsine oxide, and by blocking receptor binding, consistent with receptor-mediated endocytosis. Approximately 30% of the total cell-associated hormone is internalized at 30 min of incubation.

View Article and Find Full Text PDF

To investigate whether guanine nucleotides regulate interconversion of the two-state hepatic glucagon receptor we have utilized kinetic assays of glucagon binding to partially purified rat liver plasma membranes. Dissociation of glucagon at 30 degrees C exhibited biexponential character in either the absence or presence of GTP, indicating that the system previously seen in intact hepatocytes is independent of intracellular modulators. In each case the receptors underwent a time-dependent conversion from a low affinity to a high affinity state.

View Article and Find Full Text PDF

The histidine residue at the amino terminus of lysine-12 protected glucagon was replaced by its D-isomer by an established semisynthetic strategy to extend a stepwise series of replacements at this position. The product was examined for its secondary structure and its function. Circular dichroism spectra obtained at concentrations from 0.

View Article and Find Full Text PDF

The ability of catfish glucagon and glucagon-like peptide to bind and activate mammalian glucagon receptors was investigated. Neither catfish peptide binds to glucagon receptors of rat liver, hypothalamus or pituitary. Neither stimulates adenylate cyclase activity in liver membranes.

View Article and Find Full Text PDF